Tracking Context in Conversational Search: From Utterances to Neural Embeddings

Detalhes bibliográficos
Autor(a) principal: Ferreira, Rafael André Henriques
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/116770
Resumo: The use of conversational assistants is becoming increasingly more popular among the general public, pushing the research towards more advanced and sophisticated techniques. Hence, there are currently a number of research opportunities to extend the comprehension and applicability of these tasks in everyday systems. These conversational assistants are capable of performing various tasks, such as chitchatting, internal device functions (e.g., setting up an alarm), and searching for information. In the last few years, the interest in conversational search is increasing, not only because of the generalization of conversational assistants but also because conversational search is a step forward in allowing a more natural interaction with the system. To build a system such as this, many components need to work together, since in a conversation, the importance of context is paramount to retrieve the best answers to the user’s questions. In this thesis, the focus was on developing a conversational search system that aims to help people search for information in a natural way. In particular, this system must be able to understand the context where the question is posed, tracking the current state of the conversation and detecting mentions to previous questions and answers. We achieve this by using a context-tracking component based on neural query-rewriting models. Another crucial aspect of the system is to provide the most relevant answers given the question and the conversational history. To achieve this objective, we used state-of-the-art retrieval and re-ranking methods and expanded their architecture to use the conversational context. The results obtained with the system developed achieved state-of-the-art when compared to the baselines present in TREC Conversational Assistance Track (CAsT) 2019.
id RCAP_d1947a4687d9669203dc4ed0b6d5cdad
oai_identifier_str oai:run.unl.pt:10362/116770
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Tracking Context in Conversational Search: From Utterances to Neural EmbeddingsConversational SearchMulti-turn Question AnsweringConversational ContextInformation RetrievalQuery RewritingRankingDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe use of conversational assistants is becoming increasingly more popular among the general public, pushing the research towards more advanced and sophisticated techniques. Hence, there are currently a number of research opportunities to extend the comprehension and applicability of these tasks in everyday systems. These conversational assistants are capable of performing various tasks, such as chitchatting, internal device functions (e.g., setting up an alarm), and searching for information. In the last few years, the interest in conversational search is increasing, not only because of the generalization of conversational assistants but also because conversational search is a step forward in allowing a more natural interaction with the system. To build a system such as this, many components need to work together, since in a conversation, the importance of context is paramount to retrieve the best answers to the user’s questions. In this thesis, the focus was on developing a conversational search system that aims to help people search for information in a natural way. In particular, this system must be able to understand the context where the question is posed, tracking the current state of the conversation and detecting mentions to previous questions and answers. We achieve this by using a context-tracking component based on neural query-rewriting models. Another crucial aspect of the system is to provide the most relevant answers given the question and the conversational history. To achieve this objective, we used state-of-the-art retrieval and re-ranking methods and expanded their architecture to use the conversational context. The results obtained with the system developed achieved state-of-the-art when compared to the baselines present in TREC Conversational Assistance Track (CAsT) 2019.O uso de assistentes conversacionais está a tornar-se cada vez mais popular entre o público em geral, levando à investigação de técnicas mais avançadas e sofisticadas. Consequentemente, existem atualmente várias oportunidades de investigação para estender a compreensão e aplicabilidade destas tarefas em sistemas do quotidiano. Estes assistentes são capazes de efetuar várias tarefas como, por exemplo: ter uma conversa informal, efetuar funções internas ao dispositivo (e.g. colocar um alarme), e pesquisar por informação. Nos últimos anos, o interesse em pesquisa conversacional tem estado a aumentar, não só pela generalização dos assistentes conversacionais, mas também devido a ser um passo em frente para permitir uma interação mais natural com o sistema. Para construir um sistema deste tipo, vários componentes têm de trabalhar em conjunto, uma vez que numa conversa o contexto é da maior importância para recuperar as melhores respostas para as perguntas do utilizador. Nesta tese, o foco foi desenvolver um sistema de pesquisa conversacional para ajudar as pessoas a pesquisar por informação de uma forma natural. Em particular, este sistema tem de ser capaz de compreender o contexto onde a questão é colocada, fazendo tracking do estado atual da conversa e detetando menções a perguntas e respostas anteriores. Com esse objetivo, desenvolvemos um componente de tracking de contexto baseado em modelos neuronais de reescrita de perguntas. Outro aspeto crucial deste sistema é fornecer as respostas mais relevantes dada uma pergunta e o histórico da conversa. Para alcançar este objetivo, utilizámos modelos do estado-da-arte em recuperação de informação e re-ranking e expandimos estas arquiteturas de modo a utilizarem o contexto da conversa. Os resultados obtidos com o sistema desenvolvido atingiram resultados do estado.da-arte quando comparados às baselines submetidas no TREC Conversational Assistance Track (CAsT) 2019.Magalhães, JoãoSemedo, DavidRUNFerreira, Rafael André Henriques2021-05-03T12:42:30Z2021-0220202021-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/116770enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:59:32Zoai:run.unl.pt:10362/116770Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:43:16.554970Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Tracking Context in Conversational Search: From Utterances to Neural Embeddings
title Tracking Context in Conversational Search: From Utterances to Neural Embeddings
spellingShingle Tracking Context in Conversational Search: From Utterances to Neural Embeddings
Ferreira, Rafael André Henriques
Conversational Search
Multi-turn Question Answering
Conversational Context
Information Retrieval
Query Rewriting
Ranking
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Tracking Context in Conversational Search: From Utterances to Neural Embeddings
title_full Tracking Context in Conversational Search: From Utterances to Neural Embeddings
title_fullStr Tracking Context in Conversational Search: From Utterances to Neural Embeddings
title_full_unstemmed Tracking Context in Conversational Search: From Utterances to Neural Embeddings
title_sort Tracking Context in Conversational Search: From Utterances to Neural Embeddings
author Ferreira, Rafael André Henriques
author_facet Ferreira, Rafael André Henriques
author_role author
dc.contributor.none.fl_str_mv Magalhães, João
Semedo, David
RUN
dc.contributor.author.fl_str_mv Ferreira, Rafael André Henriques
dc.subject.por.fl_str_mv Conversational Search
Multi-turn Question Answering
Conversational Context
Information Retrieval
Query Rewriting
Ranking
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Conversational Search
Multi-turn Question Answering
Conversational Context
Information Retrieval
Query Rewriting
Ranking
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description The use of conversational assistants is becoming increasingly more popular among the general public, pushing the research towards more advanced and sophisticated techniques. Hence, there are currently a number of research opportunities to extend the comprehension and applicability of these tasks in everyday systems. These conversational assistants are capable of performing various tasks, such as chitchatting, internal device functions (e.g., setting up an alarm), and searching for information. In the last few years, the interest in conversational search is increasing, not only because of the generalization of conversational assistants but also because conversational search is a step forward in allowing a more natural interaction with the system. To build a system such as this, many components need to work together, since in a conversation, the importance of context is paramount to retrieve the best answers to the user’s questions. In this thesis, the focus was on developing a conversational search system that aims to help people search for information in a natural way. In particular, this system must be able to understand the context where the question is posed, tracking the current state of the conversation and detecting mentions to previous questions and answers. We achieve this by using a context-tracking component based on neural query-rewriting models. Another crucial aspect of the system is to provide the most relevant answers given the question and the conversational history. To achieve this objective, we used state-of-the-art retrieval and re-ranking methods and expanded their architecture to use the conversational context. The results obtained with the system developed achieved state-of-the-art when compared to the baselines present in TREC Conversational Assistance Track (CAsT) 2019.
publishDate 2020
dc.date.none.fl_str_mv 2020
2021-05-03T12:42:30Z
2021-02
2021-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/116770
url http://hdl.handle.net/10362/116770
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138042631421952