Analyzing user reviews of messaging Apps for competitive analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/133017 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_d25cf6861752407ebd5e899ec253516e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/133017 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analyzing user reviews of messaging Apps for competitive analysisCompetitive analysisTopic modelingSentiment analysisText miningUser reviewsMessaging appsDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe rise of various messaging apps has resulted in intensively fierce competition, and the era of Web 2.0 enables business managers to gain competitive intelligence from user-generated content (UGC). Text-mining UGC for competitive intelligence has been drawing great interest of researchers. However, relevant studies mostly focus on industries such as hospitality and products, and few studies applied such techniques to effectively perform competitive analysis for messaging apps. Here, we conducted a competitive analysis based on topic modeling and sentiment analysis by text-mining 27,479 user reviews of four iOS messaging apps, namely Messenger, WhatsApp, Signal and Telegram. The results show that the performance of topic modeling and sentiment analysis is encouraging, and that a combination of the extracted app aspect-based topics and the adjusted sentiment scores can effectively reveal meaningful competitive insights into user concerns, competitive strengths and weaknesses as well as changes of user sentiments over time. We anticipate that this study will not only advance the existing literature on competitive analysis using text mining techniques for messaging apps but also help existing players and new entrants in the market to sharpen their competitive edge by better understanding their user needs and the industry trends.Castelli, MauroRUNLiang, Wenyi2022-02-16T18:28:08Z2022-01-282022-01-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/133017TID:202942694enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:43Zoai:run.unl.pt:10362/133017Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:41.024848Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analyzing user reviews of messaging Apps for competitive analysis |
title |
Analyzing user reviews of messaging Apps for competitive analysis |
spellingShingle |
Analyzing user reviews of messaging Apps for competitive analysis Liang, Wenyi Competitive analysis Topic modeling Sentiment analysis Text mining User reviews Messaging apps |
title_short |
Analyzing user reviews of messaging Apps for competitive analysis |
title_full |
Analyzing user reviews of messaging Apps for competitive analysis |
title_fullStr |
Analyzing user reviews of messaging Apps for competitive analysis |
title_full_unstemmed |
Analyzing user reviews of messaging Apps for competitive analysis |
title_sort |
Analyzing user reviews of messaging Apps for competitive analysis |
author |
Liang, Wenyi |
author_facet |
Liang, Wenyi |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Liang, Wenyi |
dc.subject.por.fl_str_mv |
Competitive analysis Topic modeling Sentiment analysis Text mining User reviews Messaging apps |
topic |
Competitive analysis Topic modeling Sentiment analysis Text mining User reviews Messaging apps |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-16T18:28:08Z 2022-01-28 2022-01-28T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/133017 TID:202942694 |
url |
http://hdl.handle.net/10362/133017 |
identifier_str_mv |
TID:202942694 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138079498305536 |