Precision bin-picking using a 3D sensor and a 1D laser sensor

Detalhes bibliográficos
Autor(a) principal: Mota, Joana Beatriz Carvalho
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/27012
Resumo: The technique that is being used by a robot to grab objects that are randomly placed inside a box or on a pallet is called bin-picking. This process is of great interest in an industrial environment as it provides enhanced automation, increased production and cost reduction. Bin-picking has evolved greatly over the years due to tremendous strides empowered by advanced vision technology, software, and gripping solutions which are in constant development. However, the creation of a versatile system, capable of collecting any type of object without deforming it, regardless of the disordered environment around it, remains a challenge. To this goal, the use of 3D perception is unavoidable. Still, the information acquired by some lower cost 3D sensors is not very precise; therefore, the combination of this information with the one of other devices is an approach already in study. The main goal of this work is to develop a solution for the execution of a precise bin-picking process capable of grasping small and fragile objects without breaking or deforming them. This may be done by combining the information provided by two sensors: one 3D sensor (Kinect) used to analyse the workspace and identify the object, and a 1D laser sensor to determine the exact distance to the object when approaching it. Additionally, the developed system may be placed at the end of a manipulator in order to become an active perception unit. Once the global system of sensors, their controllers and the robotic manipulator are integrated into a ROS (Robot Operating System) infrastructure, the data provided by the sensors can be analysed and combined to provide a bin-picking solution. Finally, the testing phase demonstrated the viability and the reliability of the developed bin-picking process.
id RCAP_d3d72380689d89fa94f20e768e408a32
oai_identifier_str oai:ria.ua.pt:10773/27012
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Precision bin-picking using a 3D sensor and a 1D laser sensorBin-pickingFanuc LR Mate 200iDKinect SensorLaser SensorROSROSIndustrialMoveItPoint CloudPCLPrecisionThe technique that is being used by a robot to grab objects that are randomly placed inside a box or on a pallet is called bin-picking. This process is of great interest in an industrial environment as it provides enhanced automation, increased production and cost reduction. Bin-picking has evolved greatly over the years due to tremendous strides empowered by advanced vision technology, software, and gripping solutions which are in constant development. However, the creation of a versatile system, capable of collecting any type of object without deforming it, regardless of the disordered environment around it, remains a challenge. To this goal, the use of 3D perception is unavoidable. Still, the information acquired by some lower cost 3D sensors is not very precise; therefore, the combination of this information with the one of other devices is an approach already in study. The main goal of this work is to develop a solution for the execution of a precise bin-picking process capable of grasping small and fragile objects without breaking or deforming them. This may be done by combining the information provided by two sensors: one 3D sensor (Kinect) used to analyse the workspace and identify the object, and a 1D laser sensor to determine the exact distance to the object when approaching it. Additionally, the developed system may be placed at the end of a manipulator in order to become an active perception unit. Once the global system of sensors, their controllers and the robotic manipulator are integrated into a ROS (Robot Operating System) infrastructure, the data provided by the sensors can be analysed and combined to provide a bin-picking solution. Finally, the testing phase demonstrated the viability and the reliability of the developed bin-picking process.À tecnologia usada por um robô para agarrar objetos que estão dispostos de forma aleatória dentro de uma caixa ou sobre uma palete chama-se binpicking. Este processo é de grande interesse para a industria uma vez que oferece maior autonomia, aumento de produção e redução de custos. O binpicking tem evoluido de forma significativa ao longo dos anos graças aos avanços possibilitados pelo desenvolvimento tecnológico na área da visão, software e soluções de diferentes garras que estão em constante evolução. Contudo, a criação de um sistema versátil, capaz de agarrar qualquer tipo de objeto sem o deformar, independentemente do ambiente desordenado à sua volta, continua a ser o principal objetivo. Para esse fim, o recurso à perceção 3D é imprescindível. Ainda assim, a informação adquirida por sensores 3D não é muito precisa e, por isso, a combinação deste com a de outros dispositivos é uma abordagem ainda em estudo. O objetivo principal deste trabalho é então desenvolver uma solução para a execução de um processo de bin-picking capaz de agarrar objetos pequenos e frágeis sem os partir ou deformar. Isto poderá ser feito através da combinação entre a informação proveniente de dois sensores: um sensor 3D (Kinect) usado para analisar o espaço de trabalho e identificar o objeto, e um sensor laser 1D usado para determinar a sua distância exata e assim se poder aproximar. Adicionalmente, o sistema desenvolvido pode ser acoplado a um manipulador de forma a criar uma unidade de perceção ativa. Uma vez tendo um sistema global de sensores, os seus controladores e o manipulador robótico integrados numa infraestrutura ROS (Robot Operating System), os dados fornecidos pelos sensores podem ser analisados e combinados, e uma solução de bin-picking pode ser desenvolvida. Por último, a fase de testes demonstrou, depois de alguns ajustes nas medidas do sensor laser, a viabilidade e fiabilidade do processo de bin-picking desenvolvido.2019-11-23T14:48:57Z2018-09-26T00:00:00Z2018-09-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/27012TID:202237818engMota, Joana Beatriz Carvalhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:52:21Zoai:ria.ua.pt:10773/27012Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:54.275581Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Precision bin-picking using a 3D sensor and a 1D laser sensor
title Precision bin-picking using a 3D sensor and a 1D laser sensor
spellingShingle Precision bin-picking using a 3D sensor and a 1D laser sensor
Mota, Joana Beatriz Carvalho
Bin-picking
Fanuc LR Mate 200iD
Kinect Sensor
Laser Sensor
ROS
ROSIndustrial
MoveIt
Point Cloud
PCL
Precision
title_short Precision bin-picking using a 3D sensor and a 1D laser sensor
title_full Precision bin-picking using a 3D sensor and a 1D laser sensor
title_fullStr Precision bin-picking using a 3D sensor and a 1D laser sensor
title_full_unstemmed Precision bin-picking using a 3D sensor and a 1D laser sensor
title_sort Precision bin-picking using a 3D sensor and a 1D laser sensor
author Mota, Joana Beatriz Carvalho
author_facet Mota, Joana Beatriz Carvalho
author_role author
dc.contributor.author.fl_str_mv Mota, Joana Beatriz Carvalho
dc.subject.por.fl_str_mv Bin-picking
Fanuc LR Mate 200iD
Kinect Sensor
Laser Sensor
ROS
ROSIndustrial
MoveIt
Point Cloud
PCL
Precision
topic Bin-picking
Fanuc LR Mate 200iD
Kinect Sensor
Laser Sensor
ROS
ROSIndustrial
MoveIt
Point Cloud
PCL
Precision
description The technique that is being used by a robot to grab objects that are randomly placed inside a box or on a pallet is called bin-picking. This process is of great interest in an industrial environment as it provides enhanced automation, increased production and cost reduction. Bin-picking has evolved greatly over the years due to tremendous strides empowered by advanced vision technology, software, and gripping solutions which are in constant development. However, the creation of a versatile system, capable of collecting any type of object without deforming it, regardless of the disordered environment around it, remains a challenge. To this goal, the use of 3D perception is unavoidable. Still, the information acquired by some lower cost 3D sensors is not very precise; therefore, the combination of this information with the one of other devices is an approach already in study. The main goal of this work is to develop a solution for the execution of a precise bin-picking process capable of grasping small and fragile objects without breaking or deforming them. This may be done by combining the information provided by two sensors: one 3D sensor (Kinect) used to analyse the workspace and identify the object, and a 1D laser sensor to determine the exact distance to the object when approaching it. Additionally, the developed system may be placed at the end of a manipulator in order to become an active perception unit. Once the global system of sensors, their controllers and the robotic manipulator are integrated into a ROS (Robot Operating System) infrastructure, the data provided by the sensors can be analysed and combined to provide a bin-picking solution. Finally, the testing phase demonstrated the viability and the reliability of the developed bin-picking process.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-26T00:00:00Z
2018-09-26
2019-11-23T14:48:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/27012
TID:202237818
url http://hdl.handle.net/10773/27012
identifier_str_mv TID:202237818
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137653501722624