How do cancer cells cope with supernumerary centrosomes?

Detalhes bibliográficos
Autor(a) principal: Dores, Katharina Santos das
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/31886
Resumo: Cancer kills one in five people each year in western societies, therefore clinicians are eager to find novel diagnostic, prognostic and therapeutic tools to predict outcomes and treat patients. More than a century ago, Theodor Boveri suggested that numerical abnormalities in the centrosome, the major Microtubule Organizing Centre (MTOC) in animal cells, cause abnormal cell division and tumour formation. Extra centrosomes promote aberrant cell divisions, which can induce the formation of more than two non-viable daughter cells. However cancer cells often divide successfully and survive by clustering (i.e. gathering) their supernumerary centrosomes. Our previous work has indeed shown that centrosome defects are widespread in the NCI-60 panel of cancer cell lines and that centrosome clustering is the main but not the sole coping mechanism with centrosome amplification. With this thesis, I wanted to investigate a) how widespread clustering is in the NCI-60 panel, b) what alternative coping mechanisms exist and how widespread they are, and c) how cells divide in presence of alternative mechanisms. To answer these questions, we screened the centrosome clustering ability of 27 cancer cell lines using immunofluorescence images of mitotic cells displaying centrosome amplification. This work showed that centrosome clustering is widespread in cancer and highlighted the presence of alternative mechanisms, i.e. centrosome extrusion and inactivation, for the first time in cancer. Furthermore, I observed that most of the cell lines divide in a bipolar fashion by combining the different coping mechanisms. Further studies are now required to highlight the cellular and molecular machineries regulating the alternative mechanisms as they represent exploitable Achilles’ heels of cancer cells for the development of innovative drugs to selectively kill cancer.
id RCAP_d75b9e9ee1e900a2d6a0c0065926bfa2
oai_identifier_str oai:run.unl.pt:10362/31886
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling How do cancer cells cope with supernumerary centrosomes?Centrosome amplificationCancerMitosisClusteringCentrosome extrusionCentrosome inactivationDomínio/Área Científica::Engenharia e Tecnologia::Engenharia QuímicaCancer kills one in five people each year in western societies, therefore clinicians are eager to find novel diagnostic, prognostic and therapeutic tools to predict outcomes and treat patients. More than a century ago, Theodor Boveri suggested that numerical abnormalities in the centrosome, the major Microtubule Organizing Centre (MTOC) in animal cells, cause abnormal cell division and tumour formation. Extra centrosomes promote aberrant cell divisions, which can induce the formation of more than two non-viable daughter cells. However cancer cells often divide successfully and survive by clustering (i.e. gathering) their supernumerary centrosomes. Our previous work has indeed shown that centrosome defects are widespread in the NCI-60 panel of cancer cell lines and that centrosome clustering is the main but not the sole coping mechanism with centrosome amplification. With this thesis, I wanted to investigate a) how widespread clustering is in the NCI-60 panel, b) what alternative coping mechanisms exist and how widespread they are, and c) how cells divide in presence of alternative mechanisms. To answer these questions, we screened the centrosome clustering ability of 27 cancer cell lines using immunofluorescence images of mitotic cells displaying centrosome amplification. This work showed that centrosome clustering is widespread in cancer and highlighted the presence of alternative mechanisms, i.e. centrosome extrusion and inactivation, for the first time in cancer. Furthermore, I observed that most of the cell lines divide in a bipolar fashion by combining the different coping mechanisms. Further studies are now required to highlight the cellular and molecular machineries regulating the alternative mechanisms as they represent exploitable Achilles’ heels of cancer cells for the development of innovative drugs to selectively kill cancer.Marteil, GaëlleBettencourt-Dias, MónicaRUNDores, Katharina Santos das2018-03-06T12:11:52Z2015-1120152015-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/31886enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:17:43Zoai:run.unl.pt:10362/31886Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:29:46.071920Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv How do cancer cells cope with supernumerary centrosomes?
title How do cancer cells cope with supernumerary centrosomes?
spellingShingle How do cancer cells cope with supernumerary centrosomes?
Dores, Katharina Santos das
Centrosome amplification
Cancer
Mitosis
Clustering
Centrosome extrusion
Centrosome inactivation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
title_short How do cancer cells cope with supernumerary centrosomes?
title_full How do cancer cells cope with supernumerary centrosomes?
title_fullStr How do cancer cells cope with supernumerary centrosomes?
title_full_unstemmed How do cancer cells cope with supernumerary centrosomes?
title_sort How do cancer cells cope with supernumerary centrosomes?
author Dores, Katharina Santos das
author_facet Dores, Katharina Santos das
author_role author
dc.contributor.none.fl_str_mv Marteil, Gaëlle
Bettencourt-Dias, Mónica
RUN
dc.contributor.author.fl_str_mv Dores, Katharina Santos das
dc.subject.por.fl_str_mv Centrosome amplification
Cancer
Mitosis
Clustering
Centrosome extrusion
Centrosome inactivation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
topic Centrosome amplification
Cancer
Mitosis
Clustering
Centrosome extrusion
Centrosome inactivation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
description Cancer kills one in five people each year in western societies, therefore clinicians are eager to find novel diagnostic, prognostic and therapeutic tools to predict outcomes and treat patients. More than a century ago, Theodor Boveri suggested that numerical abnormalities in the centrosome, the major Microtubule Organizing Centre (MTOC) in animal cells, cause abnormal cell division and tumour formation. Extra centrosomes promote aberrant cell divisions, which can induce the formation of more than two non-viable daughter cells. However cancer cells often divide successfully and survive by clustering (i.e. gathering) their supernumerary centrosomes. Our previous work has indeed shown that centrosome defects are widespread in the NCI-60 panel of cancer cell lines and that centrosome clustering is the main but not the sole coping mechanism with centrosome amplification. With this thesis, I wanted to investigate a) how widespread clustering is in the NCI-60 panel, b) what alternative coping mechanisms exist and how widespread they are, and c) how cells divide in presence of alternative mechanisms. To answer these questions, we screened the centrosome clustering ability of 27 cancer cell lines using immunofluorescence images of mitotic cells displaying centrosome amplification. This work showed that centrosome clustering is widespread in cancer and highlighted the presence of alternative mechanisms, i.e. centrosome extrusion and inactivation, for the first time in cancer. Furthermore, I observed that most of the cell lines divide in a bipolar fashion by combining the different coping mechanisms. Further studies are now required to highlight the cellular and molecular machineries regulating the alternative mechanisms as they represent exploitable Achilles’ heels of cancer cells for the development of innovative drugs to selectively kill cancer.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
2015
2015-11-01T00:00:00Z
2018-03-06T12:11:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/31886
url http://hdl.handle.net/10362/31886
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137922643918848