Discrete subgroups of locally definable groups

Detalhes bibliográficos
Autor(a) principal: Berarducci, A.
Data de Publicação: 2013
Outros Autores: Edmundo, Mário, Mamino, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.2/2762
Resumo: We work in the category of locally definable groups in an o-minimal expansion of a field. Eleftheriou and Peterzil conjectured that every definably generated abelian connected group G in this category is a cover of a definable group. We prove that this is the case under a natural convexity assumption inspired by the same authors, which in fact gives a necessary and sufficient condition. The proof is based on the study of the zero-dimensional compatible subgroups of G. Given a locally definable connected group G (not necessarily definably generated), we prove that the n-torsion subgroup of G is finite and that every zero-dimensional compatible subgroup of G has finite rank. Under a convexity hypothesis, we show that every zero-dimensional compatible subgroup of G is finitely generated
id RCAP_d90fb0ca1879daca33fe86556e6cf14e
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/2762
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Discrete subgroups of locally definable groupsCoversDiscrete subgroupsLocally definable groupsWe work in the category of locally definable groups in an o-minimal expansion of a field. Eleftheriou and Peterzil conjectured that every definably generated abelian connected group G in this category is a cover of a definable group. We prove that this is the case under a natural convexity assumption inspired by the same authors, which in fact gives a necessary and sufficient condition. The proof is based on the study of the zero-dimensional compatible subgroups of G. Given a locally definable connected group G (not necessarily definably generated), we prove that the n-torsion subgroup of G is finite and that every zero-dimensional compatible subgroup of G has finite rank. Under a convexity hypothesis, we show that every zero-dimensional compatible subgroup of G is finitely generatedSpringer-VerlagRepositório AbertoBerarducci, A.Edmundo, MárioMamino, M.2014-01-08T12:39:43Z2013-082013-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/2762engBerarducci, A.; Edmundo, Mário Jorge; Mamino, M. - Discrete subgroups of locally definable groups. "Selecta Mathematica (New Series)" [Em linha]. ISSN 1420-9020 (Print) 1022-1824 (Online). Vol. 19, Nº 3 (2013), p. 1-171022-1824info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:16:44Zoai:repositorioaberto.uab.pt:10400.2/2762Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:44:09.892616Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Discrete subgroups of locally definable groups
title Discrete subgroups of locally definable groups
spellingShingle Discrete subgroups of locally definable groups
Berarducci, A.
Covers
Discrete subgroups
Locally definable groups
title_short Discrete subgroups of locally definable groups
title_full Discrete subgroups of locally definable groups
title_fullStr Discrete subgroups of locally definable groups
title_full_unstemmed Discrete subgroups of locally definable groups
title_sort Discrete subgroups of locally definable groups
author Berarducci, A.
author_facet Berarducci, A.
Edmundo, Mário
Mamino, M.
author_role author
author2 Edmundo, Mário
Mamino, M.
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Berarducci, A.
Edmundo, Mário
Mamino, M.
dc.subject.por.fl_str_mv Covers
Discrete subgroups
Locally definable groups
topic Covers
Discrete subgroups
Locally definable groups
description We work in the category of locally definable groups in an o-minimal expansion of a field. Eleftheriou and Peterzil conjectured that every definably generated abelian connected group G in this category is a cover of a definable group. We prove that this is the case under a natural convexity assumption inspired by the same authors, which in fact gives a necessary and sufficient condition. The proof is based on the study of the zero-dimensional compatible subgroups of G. Given a locally definable connected group G (not necessarily definably generated), we prove that the n-torsion subgroup of G is finite and that every zero-dimensional compatible subgroup of G has finite rank. Under a convexity hypothesis, we show that every zero-dimensional compatible subgroup of G is finitely generated
publishDate 2013
dc.date.none.fl_str_mv 2013-08
2013-08-01T00:00:00Z
2014-01-08T12:39:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/2762
url http://hdl.handle.net/10400.2/2762
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Berarducci, A.; Edmundo, Mário Jorge; Mamino, M. - Discrete subgroups of locally definable groups. "Selecta Mathematica (New Series)" [Em linha]. ISSN 1420-9020 (Print) 1022-1824 (Online). Vol. 19, Nº 3 (2013), p. 1-17
1022-1824
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer-Verlag
publisher.none.fl_str_mv Springer-Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135010883633152