Discrete subgroups of locally definable groups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/2762 |
Resumo: | We work in the category of locally definable groups in an o-minimal expansion of a field. Eleftheriou and Peterzil conjectured that every definably generated abelian connected group G in this category is a cover of a definable group. We prove that this is the case under a natural convexity assumption inspired by the same authors, which in fact gives a necessary and sufficient condition. The proof is based on the study of the zero-dimensional compatible subgroups of G. Given a locally definable connected group G (not necessarily definably generated), we prove that the n-torsion subgroup of G is finite and that every zero-dimensional compatible subgroup of G has finite rank. Under a convexity hypothesis, we show that every zero-dimensional compatible subgroup of G is finitely generated |
id |
RCAP_d90fb0ca1879daca33fe86556e6cf14e |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/2762 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Discrete subgroups of locally definable groupsCoversDiscrete subgroupsLocally definable groupsWe work in the category of locally definable groups in an o-minimal expansion of a field. Eleftheriou and Peterzil conjectured that every definably generated abelian connected group G in this category is a cover of a definable group. We prove that this is the case under a natural convexity assumption inspired by the same authors, which in fact gives a necessary and sufficient condition. The proof is based on the study of the zero-dimensional compatible subgroups of G. Given a locally definable connected group G (not necessarily definably generated), we prove that the n-torsion subgroup of G is finite and that every zero-dimensional compatible subgroup of G has finite rank. Under a convexity hypothesis, we show that every zero-dimensional compatible subgroup of G is finitely generatedSpringer-VerlagRepositório AbertoBerarducci, A.Edmundo, MárioMamino, M.2014-01-08T12:39:43Z2013-082013-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/2762engBerarducci, A.; Edmundo, Mário Jorge; Mamino, M. - Discrete subgroups of locally definable groups. "Selecta Mathematica (New Series)" [Em linha]. ISSN 1420-9020 (Print) 1022-1824 (Online). Vol. 19, Nº 3 (2013), p. 1-171022-1824info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:16:44Zoai:repositorioaberto.uab.pt:10400.2/2762Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:44:09.892616Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Discrete subgroups of locally definable groups |
title |
Discrete subgroups of locally definable groups |
spellingShingle |
Discrete subgroups of locally definable groups Berarducci, A. Covers Discrete subgroups Locally definable groups |
title_short |
Discrete subgroups of locally definable groups |
title_full |
Discrete subgroups of locally definable groups |
title_fullStr |
Discrete subgroups of locally definable groups |
title_full_unstemmed |
Discrete subgroups of locally definable groups |
title_sort |
Discrete subgroups of locally definable groups |
author |
Berarducci, A. |
author_facet |
Berarducci, A. Edmundo, Mário Mamino, M. |
author_role |
author |
author2 |
Edmundo, Mário Mamino, M. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Berarducci, A. Edmundo, Mário Mamino, M. |
dc.subject.por.fl_str_mv |
Covers Discrete subgroups Locally definable groups |
topic |
Covers Discrete subgroups Locally definable groups |
description |
We work in the category of locally definable groups in an o-minimal expansion of a field. Eleftheriou and Peterzil conjectured that every definably generated abelian connected group G in this category is a cover of a definable group. We prove that this is the case under a natural convexity assumption inspired by the same authors, which in fact gives a necessary and sufficient condition. The proof is based on the study of the zero-dimensional compatible subgroups of G. Given a locally definable connected group G (not necessarily definably generated), we prove that the n-torsion subgroup of G is finite and that every zero-dimensional compatible subgroup of G has finite rank. Under a convexity hypothesis, we show that every zero-dimensional compatible subgroup of G is finitely generated |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 2013-08-01T00:00:00Z 2014-01-08T12:39:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/2762 |
url |
http://hdl.handle.net/10400.2/2762 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Berarducci, A.; Edmundo, Mário Jorge; Mamino, M. - Discrete subgroups of locally definable groups. "Selecta Mathematica (New Series)" [Em linha]. ISSN 1420-9020 (Print) 1022-1824 (Online). Vol. 19, Nº 3 (2013), p. 1-17 1022-1824 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer-Verlag |
publisher.none.fl_str_mv |
Springer-Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135010883633152 |