Mitochondrial genetic therapy in Parkinson’s disease

Detalhes bibliográficos
Autor(a) principal: Baptista, Cátia Marlene do Carmo
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/6459
Resumo: Mitochondria have their own genome, a circular double-stranded genome that encodes 13 proteins involved in electron transport and oxidative phosphorylation (OXPHOS). They are present in 10–100 copies per somatic cell and within the cell mitochondrial DNA (mtDNA) copies could be identical in sequence (homoplasmy) or wild-type and mutant mtDNA could exist in different ratios (heteroplasmy). Heteroplasmy occurs mainly because mtDNA is particularly susceptible to mutations due its proximity to reactive oxygen species (ROS) generation sites. MtDNA dysfunction is characterized by a defective OXPHOS where ATP demands are not reached. The phenotype of the mitochondrial disease depends on the mtDNA heteroplasmy, when a threshold in the region of 60–90% mutated mtDNAs is reached. The idea that mitochondrial dysfunction could influence Parkinson disease (PD) arose with the discovery of the mechanism of action of MPTP in the early 1980s that affected electron flow in Complex I (CI). Different CI related mutations have been associated with PD and two of them were identified in mtND1 gene. This fact makes the development of a mtND1 construct a very interesting approach for mitochondrial gene therapy (MGT) purposes in PD treatment. Throughout this year, it was developed a nanocarrier to transport a designed vector with possible application in MGT. The vector was constructed using pCAG-GFP plasmid and the mitochondrial gene ND1 and CaCO3 were developed for the directed transport of the plasmid towards mitochondria. This research development was divided into three main stages: i) construction of a vector using an OXPHOS CI gene, mtND1 and the pCAG-GFP plasmid; ii) study of different recombinant hosts to produce the pCAG-GFP-mtND1 vector; and iii) development of a formulation for the efficient pDNA delivery into mitochondria. The mtND1 construct was successfully obtained and inserted into different E. coli strains. The growth profiles were very similar between the strains, being observed sligth differences in the pDNA specific yields. The nanocarries obtained were biocompatible, displaying encapsulation efficiencies (EE) above 50%, sizes below 280 nm and positive zeta potential, making them very suitable for MGT.
id RCAP_de8bb8cee1378f3a2ab4c6fe5714b9a9
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/6459
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Mitochondrial genetic therapy in Parkinson’s diseaseCloning mitochondrial gene ND1Doença de ParkinsonMutações MitocondriaisNanopartículasTerapia Génica MitocondrialDomínio/Área Científica::Engenharia e Tecnologia:: Outras Engenharias e TecnologiasMitochondria have their own genome, a circular double-stranded genome that encodes 13 proteins involved in electron transport and oxidative phosphorylation (OXPHOS). They are present in 10–100 copies per somatic cell and within the cell mitochondrial DNA (mtDNA) copies could be identical in sequence (homoplasmy) or wild-type and mutant mtDNA could exist in different ratios (heteroplasmy). Heteroplasmy occurs mainly because mtDNA is particularly susceptible to mutations due its proximity to reactive oxygen species (ROS) generation sites. MtDNA dysfunction is characterized by a defective OXPHOS where ATP demands are not reached. The phenotype of the mitochondrial disease depends on the mtDNA heteroplasmy, when a threshold in the region of 60–90% mutated mtDNAs is reached. The idea that mitochondrial dysfunction could influence Parkinson disease (PD) arose with the discovery of the mechanism of action of MPTP in the early 1980s that affected electron flow in Complex I (CI). Different CI related mutations have been associated with PD and two of them were identified in mtND1 gene. This fact makes the development of a mtND1 construct a very interesting approach for mitochondrial gene therapy (MGT) purposes in PD treatment. Throughout this year, it was developed a nanocarrier to transport a designed vector with possible application in MGT. The vector was constructed using pCAG-GFP plasmid and the mitochondrial gene ND1 and CaCO3 were developed for the directed transport of the plasmid towards mitochondria. This research development was divided into three main stages: i) construction of a vector using an OXPHOS CI gene, mtND1 and the pCAG-GFP plasmid; ii) study of different recombinant hosts to produce the pCAG-GFP-mtND1 vector; and iii) development of a formulation for the efficient pDNA delivery into mitochondria. The mtND1 construct was successfully obtained and inserted into different E. coli strains. The growth profiles were very similar between the strains, being observed sligth differences in the pDNA specific yields. The nanocarries obtained were biocompatible, displaying encapsulation efficiencies (EE) above 50%, sizes below 280 nm and positive zeta potential, making them very suitable for MGT.A mitocôndria é um organelo celular que tem o seu próprio genoma, de cadeia dupla e circular que codifica 13 proteínas envolvidas no transporte de eletrões e fosforilação oxidativa. Estão presentes entre 10 e 100 cópias por célula somática e, dentro das células, as cópias de ADN mitocondrial (mtDNA) podem ser idênticas em sequência (homoplasmia) ou mtDNA “wild-type” e mutado podem existir em diferentes proporções (heteroplasmia). A heteroplasmia ocorre principalmente porque o mtDNA é particularmente suscetível a mutações, devido à sua proximidade a locais de geração de espécies reactivas de oxigénio. Alterações no mtDNA podem provocar disfunções no mecanismo de fosforilação oxidativa, onde as exigências de ATP não são atingidas. O fenótipo da doença mitocondrial depende da heteroplasmia do mtDNA, quando é atingido um valor de mtDNA mutado entre 60-90%. A ideia de que a disfunção mitocondrial poderia influenciar a doença de Parkinson surgiu com descoberta do mecanismo de ação do MPTP no início de 1980, que afeta o fluxo de eletrões no Complexo I. Diferentes mutações que afectam os genes que codificam as proteínas deste complexo têm sido associadas com a doença de Parkinson, duas delas sendo identificadas no gene mitocondrial ND1. Este facto faz com que o desenvolvimento de um vector com o gene mitocondrial ND1 seja uma abordagem muito interessante para aplicação na terapia génica mitocondrial (MGT) para o potencial tratamento da doença de Parkinson. No presente trabalho foi desenvolvido um sistema para transportar um vector, desenhado no laboratório, com possível aplicação em terapia génica mitocondrial. O vector foi construído usando o plasmídeo pCAG-GFP e o gene mitocondrial ND1. Posteriormente, nanopartículas de CaCO3 foram desenvolvidas para o seu transporte direccionado para a mitocôndria. O desenvolvimento deste projecto foi dividido em três etapas principais: i) construção do vector baseado na clonagem do gene mitocodrial ND1 no plasmídeo pCAG-GFP; ii) estudo de diferentes hospedeiros recombinantes para a amplificação do vector pCAG-GFP-mtND1; e iii) desenvolvimento de uma formulação adequada ao direccionamento do vector pCAG-GFP-mtND1 de forma eficiente para a mitocôndria. O vector pCAG-GFP-mtND1 foi inserido em diferentes estirpes de E. coli e os estudos de crescimento foram muito semelhantes entre as estirpes transformadas, tendo sido observadas apenas algumas diferenças nos rendimentos específicos. Os sistemas de entrega preparados, demonstraram ser biocompatíveis, com eficiências de encapsulação acima de 50%, tamanhos inferiores a 280 nm e potenciais zeta positivos tornando-os adequados para MGT.Costa, Diana Rita BarataSousa, Fani Pereira deuBibliorumBaptista, Cátia Marlene do Carmo2018-11-21T10:48:44Z2015-11-102015-9-302015-11-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/6459TID:201639890enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:44:56Zoai:ubibliorum.ubi.pt:10400.6/6459Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:10.804220Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Mitochondrial genetic therapy in Parkinson’s disease
Cloning mitochondrial gene ND1
title Mitochondrial genetic therapy in Parkinson’s disease
spellingShingle Mitochondrial genetic therapy in Parkinson’s disease
Baptista, Cátia Marlene do Carmo
Doença de Parkinson
Mutações Mitocondriais
Nanopartículas
Terapia Génica Mitocondrial
Domínio/Área Científica::Engenharia e Tecnologia:: Outras Engenharias e Tecnologias
title_short Mitochondrial genetic therapy in Parkinson’s disease
title_full Mitochondrial genetic therapy in Parkinson’s disease
title_fullStr Mitochondrial genetic therapy in Parkinson’s disease
title_full_unstemmed Mitochondrial genetic therapy in Parkinson’s disease
title_sort Mitochondrial genetic therapy in Parkinson’s disease
author Baptista, Cátia Marlene do Carmo
author_facet Baptista, Cátia Marlene do Carmo
author_role author
dc.contributor.none.fl_str_mv Costa, Diana Rita Barata
Sousa, Fani Pereira de
uBibliorum
dc.contributor.author.fl_str_mv Baptista, Cátia Marlene do Carmo
dc.subject.por.fl_str_mv Doença de Parkinson
Mutações Mitocondriais
Nanopartículas
Terapia Génica Mitocondrial
Domínio/Área Científica::Engenharia e Tecnologia:: Outras Engenharias e Tecnologias
topic Doença de Parkinson
Mutações Mitocondriais
Nanopartículas
Terapia Génica Mitocondrial
Domínio/Área Científica::Engenharia e Tecnologia:: Outras Engenharias e Tecnologias
description Mitochondria have their own genome, a circular double-stranded genome that encodes 13 proteins involved in electron transport and oxidative phosphorylation (OXPHOS). They are present in 10–100 copies per somatic cell and within the cell mitochondrial DNA (mtDNA) copies could be identical in sequence (homoplasmy) or wild-type and mutant mtDNA could exist in different ratios (heteroplasmy). Heteroplasmy occurs mainly because mtDNA is particularly susceptible to mutations due its proximity to reactive oxygen species (ROS) generation sites. MtDNA dysfunction is characterized by a defective OXPHOS where ATP demands are not reached. The phenotype of the mitochondrial disease depends on the mtDNA heteroplasmy, when a threshold in the region of 60–90% mutated mtDNAs is reached. The idea that mitochondrial dysfunction could influence Parkinson disease (PD) arose with the discovery of the mechanism of action of MPTP in the early 1980s that affected electron flow in Complex I (CI). Different CI related mutations have been associated with PD and two of them were identified in mtND1 gene. This fact makes the development of a mtND1 construct a very interesting approach for mitochondrial gene therapy (MGT) purposes in PD treatment. Throughout this year, it was developed a nanocarrier to transport a designed vector with possible application in MGT. The vector was constructed using pCAG-GFP plasmid and the mitochondrial gene ND1 and CaCO3 were developed for the directed transport of the plasmid towards mitochondria. This research development was divided into three main stages: i) construction of a vector using an OXPHOS CI gene, mtND1 and the pCAG-GFP plasmid; ii) study of different recombinant hosts to produce the pCAG-GFP-mtND1 vector; and iii) development of a formulation for the efficient pDNA delivery into mitochondria. The mtND1 construct was successfully obtained and inserted into different E. coli strains. The growth profiles were very similar between the strains, being observed sligth differences in the pDNA specific yields. The nanocarries obtained were biocompatible, displaying encapsulation efficiencies (EE) above 50%, sizes below 280 nm and positive zeta potential, making them very suitable for MGT.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-10
2015-9-30
2015-11-10T00:00:00Z
2018-11-21T10:48:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/6459
TID:201639890
url http://hdl.handle.net/10400.6/6459
identifier_str_mv TID:201639890
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136367451570176