A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/109144 |
Resumo: | Antonio, N., de Almeida, A., & Nunes, L. (2020). A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018). Data in brief, 33(December), [106583]. https://doi.org/10.1016/j.dib.2020.106583 |
id |
RCAP_debfa95bcc42a3a15f956c792d552e7d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/109144 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018)ClassificationClusteringData miningData scienceHospitalityMachine learningRegressionRFM modelingGeneralAntonio, N., de Almeida, A., & Nunes, L. (2020). A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018). Data in brief, 33(December), [106583]. https://doi.org/10.1016/j.dib.2020.106583This data article describes a hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNAntónio, Nunode Almeida, AnaNunes, Luís2020-12-22T05:17:44Z2020-122020-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/109144eng2352-3409PURE: 26985644https://doi.org/10.1016/j.dib.2020.106583info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:53:40Zoai:run.unl.pt:10362/109144Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:25.657370Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
spellingShingle |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) António, Nuno Classification Clustering Data mining Data science Hospitality Machine learning Regression RFM modeling General |
title_short |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title_full |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title_fullStr |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title_full_unstemmed |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
title_sort |
A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018) |
author |
António, Nuno |
author_facet |
António, Nuno de Almeida, Ana Nunes, Luís |
author_role |
author |
author2 |
de Almeida, Ana Nunes, Luís |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
António, Nuno de Almeida, Ana Nunes, Luís |
dc.subject.por.fl_str_mv |
Classification Clustering Data mining Data science Hospitality Machine learning Regression RFM modeling General |
topic |
Classification Clustering Data mining Data science Hospitality Machine learning Regression RFM modeling General |
description |
Antonio, N., de Almeida, A., & Nunes, L. (2020). A hotel's customers personal, behavioral, demographic, and geographic dataset from Lisbon, Portugal (2015–2018). Data in brief, 33(December), [106583]. https://doi.org/10.1016/j.dib.2020.106583 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-22T05:17:44Z 2020-12 2020-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/109144 |
url |
http://hdl.handle.net/10362/109144 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2352-3409 PURE: 26985644 https://doi.org/10.1016/j.dib.2020.106583 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138027614765056 |