Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection

Detalhes bibliográficos
Autor(a) principal: André Cruz
Data de Publicação: 2019
Outros Autores: Gil Rocha, Rui Sousa Silva, Henrique Lopes Cardoso
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/124696
Resumo: This paper describes our submission1 to the SemEval 2019 Hyperpartisan News Detection task. Our system aims for a linguistics-based document classification from a minimal set of interpretable features, while maintaining good performance. To this goal, we follow a feature-based approach and perform several experiments with different machine learning classifiers. On the main task, our model achieved an accuracy of 71.7%, which was improved after the task's end to 72.9%. We also participate in the meta-learning sub-task, for classifying documents with the binary classifications of all submitted systems as input, achieving an accuracy of 89.9%.
id RCAP_e06a7aeedd3035e3c6412a366b52f281
oai_identifier_str oai:repositorio-aberto.up.pt:10216/124696
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News DetectionHumanidadesHumanitiesThis paper describes our submission1 to the SemEval 2019 Hyperpartisan News Detection task. Our system aims for a linguistics-based document classification from a minimal set of interpretable features, while maintaining good performance. To this goal, we follow a feature-based approach and perform several experiments with different machine learning classifiers. On the main task, our model achieved an accuracy of 71.7%, which was improved after the task's end to 72.9%. We also participate in the meta-learning sub-task, for classifying documents with the binary classifications of all submitted systems as input, achieving an accuracy of 89.9%.20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/124696eng10.18653/v1/S19-2173André CruzGil RochaRui Sousa SilvaHenrique Lopes Cardosoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:33:15Zoai:repositorio-aberto.up.pt:10216/124696Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:42:31.170629Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection
title Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection
spellingShingle Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection
André Cruz
Humanidades
Humanities
title_short Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection
title_full Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection
title_fullStr Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection
title_full_unstemmed Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection
title_sort Team Fernando-Pessa at SemEval-2019 Task 4: back to basics in Hyperpartisan News Detection
author André Cruz
author_facet André Cruz
Gil Rocha
Rui Sousa Silva
Henrique Lopes Cardoso
author_role author
author2 Gil Rocha
Rui Sousa Silva
Henrique Lopes Cardoso
author2_role author
author
author
dc.contributor.author.fl_str_mv André Cruz
Gil Rocha
Rui Sousa Silva
Henrique Lopes Cardoso
dc.subject.por.fl_str_mv Humanidades
Humanities
topic Humanidades
Humanities
description This paper describes our submission1 to the SemEval 2019 Hyperpartisan News Detection task. Our system aims for a linguistics-based document classification from a minimal set of interpretable features, while maintaining good performance. To this goal, we follow a feature-based approach and perform several experiments with different machine learning classifiers. On the main task, our model achieved an accuracy of 71.7%, which was improved after the task's end to 72.9%. We also participate in the meta-learning sub-task, for classifying documents with the binary classifications of all submitted systems as input, achieving an accuracy of 89.9%.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/124696
url https://hdl.handle.net/10216/124696
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.18653/v1/S19-2173
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135740606545920