Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/13868 |
Resumo: | This document describes the senti.ue system and how it was used for partici- pation in SemEval-2014 Task 9 challenge. Our system is an evolution of our prior work, also used in last year’s edition of Sentiment Analysis in Twitter. This sys- tem maintains a supervised machine learn- ing approach to classify the tweet overall sentiment, but with a change in the used features and the algorithm. We use a re- stricted set of 47 features in subtask B and 31 features in subtask A. In the constrained mode, and for the five data sources, senti.ue achieved a score between 78,72 and 84,05 in subtask A, and a score between 55,31 and 71,39 in sub- task B. For the unconstrained mode, our score was slightly below, except for one case in subtask A. |
id |
RCAP_84eb7cc481e38d93d86eae35e35e94f1 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/13868 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9NLPArtificial IntelligenceMachine LeaningSentiment AnalysisThis document describes the senti.ue system and how it was used for partici- pation in SemEval-2014 Task 9 challenge. Our system is an evolution of our prior work, also used in last year’s edition of Sentiment Analysis in Twitter. This sys- tem maintains a supervised machine learn- ing approach to classify the tweet overall sentiment, but with a change in the used features and the algorithm. We use a re- stricted set of 47 features in subtask B and 31 features in subtask A. In the constrained mode, and for the five data sources, senti.ue achieved a score between 78,72 and 84,05 in subtask A, and a score between 55,31 and 71,39 in sub- task B. For the unconstrained mode, our score was slightly below, except for one case in subtask A.Association for Computational Linguistics2015-03-31T10:58:47Z2015-03-312014-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/13868http://hdl.handle.net/10174/13868engJ. Saias, “Senti.ue: Tweet overall sentiment classification approach for semeval-2014 task 9,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), (Dublin, Ireland), pp. 546–550, Association for Computational Linguistics and Dublin City University, August 2014. ISBN 978-1-941643-24-2.http://www.aclweb.org/anthology/S/S14/S14-2095.pdfjsaias@uevora.pt283Saias, Joséinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:59:46Zoai:dspace.uevora.pt:10174/13868Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:07:16.402695Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
spellingShingle |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 Saias, José NLP Artificial Intelligence Machine Leaning Sentiment Analysis |
title_short |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title_full |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title_fullStr |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title_full_unstemmed |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
title_sort |
Senti.ue: Tweet Overall Sentiment Classification Approach for SemEval-2014 Task 9 |
author |
Saias, José |
author_facet |
Saias, José |
author_role |
author |
dc.contributor.author.fl_str_mv |
Saias, José |
dc.subject.por.fl_str_mv |
NLP Artificial Intelligence Machine Leaning Sentiment Analysis |
topic |
NLP Artificial Intelligence Machine Leaning Sentiment Analysis |
description |
This document describes the senti.ue system and how it was used for partici- pation in SemEval-2014 Task 9 challenge. Our system is an evolution of our prior work, also used in last year’s edition of Sentiment Analysis in Twitter. This sys- tem maintains a supervised machine learn- ing approach to classify the tweet overall sentiment, but with a change in the used features and the algorithm. We use a re- stricted set of 47 features in subtask B and 31 features in subtask A. In the constrained mode, and for the five data sources, senti.ue achieved a score between 78,72 and 84,05 in subtask A, and a score between 55,31 and 71,39 in sub- task B. For the unconstrained mode, our score was slightly below, except for one case in subtask A. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08-01T00:00:00Z 2015-03-31T10:58:47Z 2015-03-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/13868 http://hdl.handle.net/10174/13868 |
url |
http://hdl.handle.net/10174/13868 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
J. Saias, “Senti.ue: Tweet overall sentiment classification approach for semeval-2014 task 9,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), (Dublin, Ireland), pp. 546–550, Association for Computational Linguistics and Dublin City University, August 2014. ISBN 978-1-941643-24-2. http://www.aclweb.org/anthology/S/S14/S14-2095.pdf jsaias@uevora.pt 283 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Association for Computational Linguistics |
publisher.none.fl_str_mv |
Association for Computational Linguistics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136557348683776 |