Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/14878 |
Resumo: | This paper describes our participation in SemEval-2015 Task 12, and the opinion mining system sentiue. The general idea is that systems must determine the polarity of the sentiment expressed about a certain aspect of a target entity. For slot 1, entity and attribute category detection, our system applies a supervised machine learning classifier, for each label, followed by a selection based on the probability of the entity/attribute pair, on that domain. The target expression detection, for slot 2, is achieved by using a catalog of known targets for each entity type, complemented with named entity recognition. In the opinion sentiment slot, we used a 3 class polarity classifier, having BoW, lemmas, bigrams after verbs, presence of polarized terms, and punctuation based features. Working in unconstrained mode, our results for slot 1 were assessed with precision between 57% and 63%, and recall varying between 42% and 47%. In sentiment polarity, sentiue’s result accuracy was approximately 79%, reaching the best score in 2 of the 3 domains. |
id |
RCAP_dd984df885ff09d612776626a9ad93d2 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/14878 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12Sentiment AnalysisNLPMachine LearningThis paper describes our participation in SemEval-2015 Task 12, and the opinion mining system sentiue. The general idea is that systems must determine the polarity of the sentiment expressed about a certain aspect of a target entity. For slot 1, entity and attribute category detection, our system applies a supervised machine learning classifier, for each label, followed by a selection based on the probability of the entity/attribute pair, on that domain. The target expression detection, for slot 2, is achieved by using a catalog of known targets for each entity type, complemented with named entity recognition. In the opinion sentiment slot, we used a 3 class polarity classifier, having BoW, lemmas, bigrams after verbs, presence of polarized terms, and punctuation based features. Working in unconstrained mode, our results for slot 1 were assessed with precision between 57% and 63%, and recall varying between 42% and 47%. In sentiment polarity, sentiue’s result accuracy was approximately 79%, reaching the best score in 2 of the 3 domains.Association for Computational Linguistics2015-08-11T11:24:40Z2015-08-112015-06-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/14878http://hdl.handle.net/10174/14878engJosé Saias (2015). Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, Colorado, USA. June 2015. p. 767-771, ACLhttp://alt.qcri.org/semeval2015/cdrom/pdf/SemEval130.pdfhttp://www.aclweb.org/anthology/S15-2130jsaias@uevora.pt283Saias, Joséinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:01:17Zoai:dspace.uevora.pt:10174/14878Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:07:56.721769Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 |
title |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 |
spellingShingle |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 Saias, José Sentiment Analysis NLP Machine Learning |
title_short |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 |
title_full |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 |
title_fullStr |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 |
title_full_unstemmed |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 |
title_sort |
Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12 |
author |
Saias, José |
author_facet |
Saias, José |
author_role |
author |
dc.contributor.author.fl_str_mv |
Saias, José |
dc.subject.por.fl_str_mv |
Sentiment Analysis NLP Machine Learning |
topic |
Sentiment Analysis NLP Machine Learning |
description |
This paper describes our participation in SemEval-2015 Task 12, and the opinion mining system sentiue. The general idea is that systems must determine the polarity of the sentiment expressed about a certain aspect of a target entity. For slot 1, entity and attribute category detection, our system applies a supervised machine learning classifier, for each label, followed by a selection based on the probability of the entity/attribute pair, on that domain. The target expression detection, for slot 2, is achieved by using a catalog of known targets for each entity type, complemented with named entity recognition. In the opinion sentiment slot, we used a 3 class polarity classifier, having BoW, lemmas, bigrams after verbs, presence of polarized terms, and punctuation based features. Working in unconstrained mode, our results for slot 1 were assessed with precision between 57% and 63%, and recall varying between 42% and 47%. In sentiment polarity, sentiue’s result accuracy was approximately 79%, reaching the best score in 2 of the 3 domains. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08-11T11:24:40Z 2015-08-11 2015-06-04T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/14878 http://hdl.handle.net/10174/14878 |
url |
http://hdl.handle.net/10174/14878 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
José Saias (2015). Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, Colorado, USA. June 2015. p. 767-771, ACL http://alt.qcri.org/semeval2015/cdrom/pdf/SemEval130.pdf http://www.aclweb.org/anthology/S15-2130 jsaias@uevora.pt 283 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Association for Computational Linguistics |
publisher.none.fl_str_mv |
Association for Computational Linguistics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136563170377728 |