Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12

Detalhes bibliográficos
Autor(a) principal: Saias, José
Data de Publicação: 2015
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/14878
Resumo: This paper describes our participation in SemEval-2015 Task 12, and the opinion mining system sentiue. The general idea is that systems must determine the polarity of the sentiment expressed about a certain aspect of a target entity. For slot 1, entity and attribute category detection, our system applies a supervised machine learning classifier, for each label, followed by a selection based on the probability of the entity/attribute pair, on that domain. The target expression detection, for slot 2, is achieved by using a catalog of known targets for each entity type, complemented with named entity recognition. In the opinion sentiment slot, we used a 3 class polarity classifier, having BoW, lemmas, bigrams after verbs, presence of polarized terms, and punctuation based features. Working in unconstrained mode, our results for slot 1 were assessed with precision between 57% and 63%, and recall varying between 42% and 47%. In sentiment polarity, sentiue’s result accuracy was approximately 79%, reaching the best score in 2 of the 3 domains.
id RCAP_dd984df885ff09d612776626a9ad93d2
oai_identifier_str oai:dspace.uevora.pt:10174/14878
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12Sentiment AnalysisNLPMachine LearningThis paper describes our participation in SemEval-2015 Task 12, and the opinion mining system sentiue. The general idea is that systems must determine the polarity of the sentiment expressed about a certain aspect of a target entity. For slot 1, entity and attribute category detection, our system applies a supervised machine learning classifier, for each label, followed by a selection based on the probability of the entity/attribute pair, on that domain. The target expression detection, for slot 2, is achieved by using a catalog of known targets for each entity type, complemented with named entity recognition. In the opinion sentiment slot, we used a 3 class polarity classifier, having BoW, lemmas, bigrams after verbs, presence of polarized terms, and punctuation based features. Working in unconstrained mode, our results for slot 1 were assessed with precision between 57% and 63%, and recall varying between 42% and 47%. In sentiment polarity, sentiue’s result accuracy was approximately 79%, reaching the best score in 2 of the 3 domains.Association for Computational Linguistics2015-08-11T11:24:40Z2015-08-112015-06-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/14878http://hdl.handle.net/10174/14878engJosé Saias (2015). Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, Colorado, USA. June 2015. p. 767-771, ACLhttp://alt.qcri.org/semeval2015/cdrom/pdf/SemEval130.pdfhttp://www.aclweb.org/anthology/S15-2130jsaias@uevora.pt283Saias, Joséinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:01:17Zoai:dspace.uevora.pt:10174/14878Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:07:56.721769Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
title Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
spellingShingle Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
Saias, José
Sentiment Analysis
NLP
Machine Learning
title_short Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
title_full Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
title_fullStr Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
title_full_unstemmed Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
title_sort Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12
author Saias, José
author_facet Saias, José
author_role author
dc.contributor.author.fl_str_mv Saias, José
dc.subject.por.fl_str_mv Sentiment Analysis
NLP
Machine Learning
topic Sentiment Analysis
NLP
Machine Learning
description This paper describes our participation in SemEval-2015 Task 12, and the opinion mining system sentiue. The general idea is that systems must determine the polarity of the sentiment expressed about a certain aspect of a target entity. For slot 1, entity and attribute category detection, our system applies a supervised machine learning classifier, for each label, followed by a selection based on the probability of the entity/attribute pair, on that domain. The target expression detection, for slot 2, is achieved by using a catalog of known targets for each entity type, complemented with named entity recognition. In the opinion sentiment slot, we used a 3 class polarity classifier, having BoW, lemmas, bigrams after verbs, presence of polarized terms, and punctuation based features. Working in unconstrained mode, our results for slot 1 were assessed with precision between 57% and 63%, and recall varying between 42% and 47%. In sentiment polarity, sentiue’s result accuracy was approximately 79%, reaching the best score in 2 of the 3 domains.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-11T11:24:40Z
2015-08-11
2015-06-04T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/14878
http://hdl.handle.net/10174/14878
url http://hdl.handle.net/10174/14878
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv José Saias (2015). Sentiue: Target and Aspect based Sentiment Analysis in SemEval-2015 Task 12. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, Colorado, USA. June 2015. p. 767-771, ACL
http://alt.qcri.org/semeval2015/cdrom/pdf/SemEval130.pdf
http://www.aclweb.org/anthology/S15-2130
jsaias@uevora.pt
283
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Association for Computational Linguistics
publisher.none.fl_str_mv Association for Computational Linguistics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136563170377728