Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/5014 |
Resumo: | We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way. |
id |
RCAP_e1bcf53995c1c1e5aa5950328c298ad0 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/5014 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ballQuasilinear elliptic differential equationMinkowski-curvatureDirichlet boundary conditionRadial solutionPositive solutionExistenceMultiplicityVariational methodsWe study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.Juliusz Schauder CTR Nonlinear StudiesRCIPLCoelho, Maria Isabel EstevesCorsato, ChiaraRivetti, Sabrina2015-08-25T14:41:10Z2014-092014-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/5014engCOELHO, Maria Isabel Esteves; CORSATO, Chiara; RIVETTI, Sabina – Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball. Topological Methods in Nonlinear Analysis. ISSN: 1230-3429. Vol. 44, nr. 1 (2014), pp. 23-391230-3429metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:47:50Zoai:repositorio.ipl.pt:10400.21/5014Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:14:21.545125Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball |
title |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball |
spellingShingle |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball Coelho, Maria Isabel Esteves Quasilinear elliptic differential equation Minkowski-curvature Dirichlet boundary condition Radial solution Positive solution Existence Multiplicity Variational methods |
title_short |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball |
title_full |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball |
title_fullStr |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball |
title_full_unstemmed |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball |
title_sort |
Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball |
author |
Coelho, Maria Isabel Esteves |
author_facet |
Coelho, Maria Isabel Esteves Corsato, Chiara Rivetti, Sabrina |
author_role |
author |
author2 |
Corsato, Chiara Rivetti, Sabrina |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Coelho, Maria Isabel Esteves Corsato, Chiara Rivetti, Sabrina |
dc.subject.por.fl_str_mv |
Quasilinear elliptic differential equation Minkowski-curvature Dirichlet boundary condition Radial solution Positive solution Existence Multiplicity Variational methods |
topic |
Quasilinear elliptic differential equation Minkowski-curvature Dirichlet boundary condition Radial solution Positive solution Existence Multiplicity Variational methods |
description |
We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 2014-09-01T00:00:00Z 2015-08-25T14:41:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/5014 |
url |
http://hdl.handle.net/10400.21/5014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
COELHO, Maria Isabel Esteves; CORSATO, Chiara; RIVETTI, Sabina – Positive radial solutions of the Dirichlet problem for the Minkowski-Curvature equation in a ball. Topological Methods in Nonlinear Analysis. ISSN: 1230-3429. Vol. 44, nr. 1 (2014), pp. 23-39 1230-3429 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Juliusz Schauder CTR Nonlinear Studies |
publisher.none.fl_str_mv |
Juliusz Schauder CTR Nonlinear Studies |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133401579520000 |