Diagonalization in Formal Mathematics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/110484 |
Resumo: | The use of diagonalization reasonings is transversal to the Mathematical practise. Since Cantor, diagonalization reasonings are used in a great variety of areas that vanish from Topology to Logic. The objective of the present thesis was to study the formal aspects of diagonalization in Logic and more generally in the Mathematical practise. The main goal was to find a formal theory that is behind important diagonalization phenomena in Mathematics. We started by the study of diagonalization in theories of Arithmetic: Diagonalization Lemma and self-reference. In particular, we argued that important properties related to self-reference are not decidable, and we argued that the diagonalization of formulas is substantially different from the diagonalization of terms, more precisely, the Diagonal Lemma cannot prove the Strong Diagonal Lemma. We studied in detail Yablo’s Paradox. By presenting a minimal theory to express Yablo’s Paradox, we argued that Yablo’s Paradox is not a paradox about Arithmetic. From that theory and with the help of some notions of Temporal Logic, we claimed that Yablo’s Paradox is self-referential. After that, we studied several paradoxes — the Liar, Russell’s Paradox, and Curry’s Paradox— and Löb’s Theorem, and we presented a common origin to those paradoxes and theorem: Curry System. Curry Systems were studied in detail and a consistency result for specific conditions was offered. Finally, we presented a general theory of diagonalization, we exemplified the formal use of the theory, and we studied some results of Mathematics using that general theory. All the work that we present on this thesis is original. The fourth chapter gave rise to a paper by the author ([SK17]) and the third chapter will also give rise in a short period of time to a paper. Regarding the other chapters, the author, together with his Advisors, is also preparing a paper. |
id |
RCAP_e37b093e6dd252c2d24e2be09ce0fa66 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/110484 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Diagonalization in Formal MathematicsDiagonalizationGeneral Theory of DiagonalizationSelf-ReferenceDiagonalization LemmaStrong Diagonalization LemmaParadoxDomínio/Área Científica::Ciências Naturais::MatemáticasThe use of diagonalization reasonings is transversal to the Mathematical practise. Since Cantor, diagonalization reasonings are used in a great variety of areas that vanish from Topology to Logic. The objective of the present thesis was to study the formal aspects of diagonalization in Logic and more generally in the Mathematical practise. The main goal was to find a formal theory that is behind important diagonalization phenomena in Mathematics. We started by the study of diagonalization in theories of Arithmetic: Diagonalization Lemma and self-reference. In particular, we argued that important properties related to self-reference are not decidable, and we argued that the diagonalization of formulas is substantially different from the diagonalization of terms, more precisely, the Diagonal Lemma cannot prove the Strong Diagonal Lemma. We studied in detail Yablo’s Paradox. By presenting a minimal theory to express Yablo’s Paradox, we argued that Yablo’s Paradox is not a paradox about Arithmetic. From that theory and with the help of some notions of Temporal Logic, we claimed that Yablo’s Paradox is self-referential. After that, we studied several paradoxes — the Liar, Russell’s Paradox, and Curry’s Paradox— and Löb’s Theorem, and we presented a common origin to those paradoxes and theorem: Curry System. Curry Systems were studied in detail and a consistency result for specific conditions was offered. Finally, we presented a general theory of diagonalization, we exemplified the formal use of the theory, and we studied some results of Mathematics using that general theory. All the work that we present on this thesis is original. The fourth chapter gave rise to a paper by the author ([SK17]) and the third chapter will also give rise in a short period of time to a paper. Regarding the other chapters, the author, together with his Advisors, is also preparing a paper.Oitavem, IsabelKahle, ReinhardRUNSantos, Paulo Guilherme Domingos Canha Moreira dos2021-01-21T11:27:55Z2019-0620192019-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/110484enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:54:22Zoai:run.unl.pt:10362/110484Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:38.997469Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Diagonalization in Formal Mathematics |
title |
Diagonalization in Formal Mathematics |
spellingShingle |
Diagonalization in Formal Mathematics Santos, Paulo Guilherme Domingos Canha Moreira dos Diagonalization General Theory of Diagonalization Self-Reference Diagonalization Lemma Strong Diagonalization Lemma Paradox Domínio/Área Científica::Ciências Naturais::Matemáticas |
title_short |
Diagonalization in Formal Mathematics |
title_full |
Diagonalization in Formal Mathematics |
title_fullStr |
Diagonalization in Formal Mathematics |
title_full_unstemmed |
Diagonalization in Formal Mathematics |
title_sort |
Diagonalization in Formal Mathematics |
author |
Santos, Paulo Guilherme Domingos Canha Moreira dos |
author_facet |
Santos, Paulo Guilherme Domingos Canha Moreira dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oitavem, Isabel Kahle, Reinhard RUN |
dc.contributor.author.fl_str_mv |
Santos, Paulo Guilherme Domingos Canha Moreira dos |
dc.subject.por.fl_str_mv |
Diagonalization General Theory of Diagonalization Self-Reference Diagonalization Lemma Strong Diagonalization Lemma Paradox Domínio/Área Científica::Ciências Naturais::Matemáticas |
topic |
Diagonalization General Theory of Diagonalization Self-Reference Diagonalization Lemma Strong Diagonalization Lemma Paradox Domínio/Área Científica::Ciências Naturais::Matemáticas |
description |
The use of diagonalization reasonings is transversal to the Mathematical practise. Since Cantor, diagonalization reasonings are used in a great variety of areas that vanish from Topology to Logic. The objective of the present thesis was to study the formal aspects of diagonalization in Logic and more generally in the Mathematical practise. The main goal was to find a formal theory that is behind important diagonalization phenomena in Mathematics. We started by the study of diagonalization in theories of Arithmetic: Diagonalization Lemma and self-reference. In particular, we argued that important properties related to self-reference are not decidable, and we argued that the diagonalization of formulas is substantially different from the diagonalization of terms, more precisely, the Diagonal Lemma cannot prove the Strong Diagonal Lemma. We studied in detail Yablo’s Paradox. By presenting a minimal theory to express Yablo’s Paradox, we argued that Yablo’s Paradox is not a paradox about Arithmetic. From that theory and with the help of some notions of Temporal Logic, we claimed that Yablo’s Paradox is self-referential. After that, we studied several paradoxes — the Liar, Russell’s Paradox, and Curry’s Paradox— and Löb’s Theorem, and we presented a common origin to those paradoxes and theorem: Curry System. Curry Systems were studied in detail and a consistency result for specific conditions was offered. Finally, we presented a general theory of diagonalization, we exemplified the formal use of the theory, and we studied some results of Mathematics using that general theory. All the work that we present on this thesis is original. The fourth chapter gave rise to a paper by the author ([SK17]) and the third chapter will also give rise in a short period of time to a paper. Regarding the other chapters, the author, together with his Advisors, is also preparing a paper. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 2019 2019-06-01T00:00:00Z 2021-01-21T11:27:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/110484 |
url |
http://hdl.handle.net/10362/110484 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138029597622272 |