Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2

Detalhes bibliográficos
Autor(a) principal: POLTRONIERE,S.C.
Data de Publicação: 2016
Outros Autores: SOLER,E.M., BRUNO-ALFONSO,A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000100113
Resumo: ABSTRACT The problem of joint approximate diagonalization of symmetric real matrices is addressed. It is reduced to an optimization problem with the restriction that the matrix of the similarity transformation is orthogonal. Analytical solutions are derived for the case of matrices of order 2. The concepts of off-diagonalizing vectors, matrix amplitude, which is given in terms of the eigenvalues, and partially complementary matrices are introduced. This leads to a geometrical interpretation of the joint approximate diagonalization in terms of eigenvectors and off-diagonalizing vectors of the matrices. This should be helpful to deal with numerical and computational procedures involving high-order matrices.
id SBMAC-1_5a977972ef92f4400e512d4fd2f6bbb6
oai_identifier_str oai:scielo:S2179-84512016000100113
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2joint approximate diagonalizationeigenvectorsoptimizationABSTRACT The problem of joint approximate diagonalization of symmetric real matrices is addressed. It is reduced to an optimization problem with the restriction that the matrix of the similarity transformation is orthogonal. Analytical solutions are derived for the case of matrices of order 2. The concepts of off-diagonalizing vectors, matrix amplitude, which is given in terms of the eigenvalues, and partially complementary matrices are introduced. This leads to a geometrical interpretation of the joint approximate diagonalization in terms of eigenvectors and off-diagonalizing vectors of the matrices. This should be helpful to deal with numerical and computational procedures involving high-order matrices.Sociedade Brasileira de Matemática Aplicada e Computacional2016-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000100113TEMA (São Carlos) v.17 n.1 2016reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2016.017.01.0113info:eu-repo/semantics/openAccessPOLTRONIERE,S.C.SOLER,E.M.BRUNO-ALFONSO,A.eng2016-05-17T00:00:00Zoai:scielo:S2179-84512016000100113Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2016-05-17T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2
title Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2
spellingShingle Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2
POLTRONIERE,S.C.
joint approximate diagonalization
eigenvectors
optimization
title_short Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2
title_full Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2
title_fullStr Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2
title_full_unstemmed Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2
title_sort Joint Approximate Diagonalization of Symmetric Real Matrices of Order 2
author POLTRONIERE,S.C.
author_facet POLTRONIERE,S.C.
SOLER,E.M.
BRUNO-ALFONSO,A.
author_role author
author2 SOLER,E.M.
BRUNO-ALFONSO,A.
author2_role author
author
dc.contributor.author.fl_str_mv POLTRONIERE,S.C.
SOLER,E.M.
BRUNO-ALFONSO,A.
dc.subject.por.fl_str_mv joint approximate diagonalization
eigenvectors
optimization
topic joint approximate diagonalization
eigenvectors
optimization
description ABSTRACT The problem of joint approximate diagonalization of symmetric real matrices is addressed. It is reduced to an optimization problem with the restriction that the matrix of the similarity transformation is orthogonal. Analytical solutions are derived for the case of matrices of order 2. The concepts of off-diagonalizing vectors, matrix amplitude, which is given in terms of the eigenvalues, and partially complementary matrices are introduced. This leads to a geometrical interpretation of the joint approximate diagonalization in terms of eigenvectors and off-diagonalizing vectors of the matrices. This should be helpful to deal with numerical and computational procedures involving high-order matrices.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000100113
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000100113
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2016.017.01.0113
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.17 n.1 2016
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220158648320