Genetic programming with semantic equivalence classes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/151422 |
Resumo: | Ruberto, S., Vanneschi, L., & Castelli, M. (2019). Genetic programming with semantic equivalence classes. Swarm and Evolutionary Computation, 44(February), 453-469. DOI: 10.1016/j.swevo.2018.06.001 |
id |
RCAP_e89a4ed9a8df3bbe736f80d4eaa5613d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/151422 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Genetic programming with semantic equivalence classesEquivalence classesGenetic programmingSemanticsComputer Science(all)Mathematics(all)Ruberto, S., Vanneschi, L., & Castelli, M. (2019). Genetic programming with semantic equivalence classes. Swarm and Evolutionary Computation, 44(February), 453-469. DOI: 10.1016/j.swevo.2018.06.001In this paper, we introduce the concept of semantics-based equivalence classes for symbolic regression problems in genetic programming. The idea is implemented by means of two different genetic programming systems, in which two different definitions of equivalence are used. In both systems, whenever a solution in an equivalence class is found, it is possible to generate any other solution in that equivalence class analytically. As such, these two systems allow us to shift the objective of genetic programming: instead of finding a globally optimal solution, the objective is now to find any solution that belongs to the same equivalence class as a global optimum. Further, we propose improvements to these genetic programming systems in which, once a solution that belongs to a particular equivalence class is generated, no other solution in that class is accepted in the population during the evolution anymore. We call these improved versions filtered systems. Experimental results obtained via seven complex real-life test problems show that using equivalence classes is a promising idea and that filters are generally helpful for improving the systems' performance. Furthermore, the proposed methods produce individuals with a much smaller size with respect to geometric semantic genetic programming. Finally, we show that filters are also useful to improve the performance of a state-of-the-art method, not explicitly based on semantic equivalence classes, like linear scaling.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNRuberto, StefanoVanneschi, LeonardoCastelli, Mauro2024-01-27T01:32:02Z2019-022019-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article17application/pdfhttp://hdl.handle.net/10362/151422eng2210-6502PURE: 5097819https://doi.org/10.1016/j.swevo.2018.06.001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:52Zoai:run.unl.pt:10362/151422Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:35.205628Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Genetic programming with semantic equivalence classes |
title |
Genetic programming with semantic equivalence classes |
spellingShingle |
Genetic programming with semantic equivalence classes Ruberto, Stefano Equivalence classes Genetic programming Semantics Computer Science(all) Mathematics(all) |
title_short |
Genetic programming with semantic equivalence classes |
title_full |
Genetic programming with semantic equivalence classes |
title_fullStr |
Genetic programming with semantic equivalence classes |
title_full_unstemmed |
Genetic programming with semantic equivalence classes |
title_sort |
Genetic programming with semantic equivalence classes |
author |
Ruberto, Stefano |
author_facet |
Ruberto, Stefano Vanneschi, Leonardo Castelli, Mauro |
author_role |
author |
author2 |
Vanneschi, Leonardo Castelli, Mauro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Ruberto, Stefano Vanneschi, Leonardo Castelli, Mauro |
dc.subject.por.fl_str_mv |
Equivalence classes Genetic programming Semantics Computer Science(all) Mathematics(all) |
topic |
Equivalence classes Genetic programming Semantics Computer Science(all) Mathematics(all) |
description |
Ruberto, S., Vanneschi, L., & Castelli, M. (2019). Genetic programming with semantic equivalence classes. Swarm and Evolutionary Computation, 44(February), 453-469. DOI: 10.1016/j.swevo.2018.06.001 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 2019-02-01T00:00:00Z 2024-01-27T01:32:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/151422 |
url |
http://hdl.handle.net/10362/151422 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2210-6502 PURE: 5097819 https://doi.org/10.1016/j.swevo.2018.06.001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
17 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138134590488576 |