Modeling directional spatio-temporal processes in island biogeography
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.3/4239 |
Resumo: | A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio-temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time-isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time-isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio-temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity. |
id |
RCAP_ebb7ebb1ba1e0e3fb62517317e505dd9 |
---|---|
oai_identifier_str |
oai:repositorio.uac.pt:10400.3/4239 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modeling directional spatio-temporal processes in island biogeographyCommunity AssemblyDispersal LimitationIsland ColonizationNetwork AnalysisOceanic IslandsSpatio-temporal ModelingA key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio-temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time-isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time-isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio-temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity.FCT - Fundação para a Ciência e a Tecnologia, I.P.Wiley Open AccessRepositório da Universidade dos AçoresCarvalho, José C.Cardoso, PedroRigal, FrançoisTriantis, Kostas A.Borges, Paulo A. V.2017-06-14T12:14:25Z2015-102015-11-11T16:23:49Z2015-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.3/4239engCarvalho, J.C.; Cardoso, P.; Rigal, F.; Triantis, K.A.; Borges, P.A.V. (2015). Modeling directional spatio-temporal processes in island biogeography, "Ecology and Evolution", 5(20): 4671-4682. doi: 10.1002/ece3.16322045-7758 (Online)10.1002/ece3.1632info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-12-20T14:31:36Zoai:repositorio.uac.pt:10400.3/4239Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:26:05.574953Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modeling directional spatio-temporal processes in island biogeography |
title |
Modeling directional spatio-temporal processes in island biogeography |
spellingShingle |
Modeling directional spatio-temporal processes in island biogeography Carvalho, José C. Community Assembly Dispersal Limitation Island Colonization Network Analysis Oceanic Islands Spatio-temporal Modeling |
title_short |
Modeling directional spatio-temporal processes in island biogeography |
title_full |
Modeling directional spatio-temporal processes in island biogeography |
title_fullStr |
Modeling directional spatio-temporal processes in island biogeography |
title_full_unstemmed |
Modeling directional spatio-temporal processes in island biogeography |
title_sort |
Modeling directional spatio-temporal processes in island biogeography |
author |
Carvalho, José C. |
author_facet |
Carvalho, José C. Cardoso, Pedro Rigal, François Triantis, Kostas A. Borges, Paulo A. V. |
author_role |
author |
author2 |
Cardoso, Pedro Rigal, François Triantis, Kostas A. Borges, Paulo A. V. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade dos Açores |
dc.contributor.author.fl_str_mv |
Carvalho, José C. Cardoso, Pedro Rigal, François Triantis, Kostas A. Borges, Paulo A. V. |
dc.subject.por.fl_str_mv |
Community Assembly Dispersal Limitation Island Colonization Network Analysis Oceanic Islands Spatio-temporal Modeling |
topic |
Community Assembly Dispersal Limitation Island Colonization Network Analysis Oceanic Islands Spatio-temporal Modeling |
description |
A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio-temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time-isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time-isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio-temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 2015-11-11T16:23:49Z 2015-10-01T00:00:00Z 2017-06-14T12:14:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.3/4239 |
url |
http://hdl.handle.net/10400.3/4239 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Carvalho, J.C.; Cardoso, P.; Rigal, F.; Triantis, K.A.; Borges, P.A.V. (2015). Modeling directional spatio-temporal processes in island biogeography, "Ecology and Evolution", 5(20): 4671-4682. doi: 10.1002/ece3.1632 2045-7758 (Online) 10.1002/ece3.1632 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Open Access |
publisher.none.fl_str_mv |
Wiley Open Access |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817554311269318656 |