Geometrias planas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/2890 |
Resumo: | Um sistema axiomático é uma estrutura lógica organizada constituída por termos primitivos, axiomas, termos definidos, um sistema de regras de inferência e teoremas ou proposições. Um modelo para um sistema axiomático é uma interpretação desse sistema, consistindo na atribuição de significados particulares aos termos primitivos, de modo a que os axiomas, lidos à luz desta interpretação, se tornem proposições verdadeiras. No presente trabalho apresentamos uma hierarquização de geometrias planas, desde as geometrias abstractas até às geometrias neutras ou absolutas. Faremos uma breve referência às geometrias Euclidiana e hiperbólica planas, cujos sistemas axiomáticos são categóricos. Por fim, apresentaremos o plano cartesiano real e o semiplano de Poincaré como modelos para as geometrias Euclidiana e hiperbólica, respectivamente. ABSTRACT: An axiomatic system is an organized logical structure consisting of undefined terms, axioms, defined terms, a system of inference rules and theorems. A model for an axiomatic system is an interpretation of this system, consisting of the attribution of particular meanings to the undefined terms, in order that the axioms, read in the light of this interpretation, become true propositions. In this work we will present plane geometries, from abstract to neutral or absolute geometries. We will make a brief reference to Euclidean and hyperbolic plane geometries, whose axiomatic systems are categorical. Finally, we will present the real cartesian plane and Poincaré half plane as models for the Euclidean and hyperbolic geometries, respectively. |
id |
RCAP_f01a2932dca8808c68d843ff1c2b7b2f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/2890 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Geometrias planasGeometria planaGeometria euclideanaUm sistema axiomático é uma estrutura lógica organizada constituída por termos primitivos, axiomas, termos definidos, um sistema de regras de inferência e teoremas ou proposições. Um modelo para um sistema axiomático é uma interpretação desse sistema, consistindo na atribuição de significados particulares aos termos primitivos, de modo a que os axiomas, lidos à luz desta interpretação, se tornem proposições verdadeiras. No presente trabalho apresentamos uma hierarquização de geometrias planas, desde as geometrias abstractas até às geometrias neutras ou absolutas. Faremos uma breve referência às geometrias Euclidiana e hiperbólica planas, cujos sistemas axiomáticos são categóricos. Por fim, apresentaremos o plano cartesiano real e o semiplano de Poincaré como modelos para as geometrias Euclidiana e hiperbólica, respectivamente. ABSTRACT: An axiomatic system is an organized logical structure consisting of undefined terms, axioms, defined terms, a system of inference rules and theorems. A model for an axiomatic system is an interpretation of this system, consisting of the attribution of particular meanings to the undefined terms, in order that the axioms, read in the light of this interpretation, become true propositions. In this work we will present plane geometries, from abstract to neutral or absolute geometries. We will make a brief reference to Euclidean and hyperbolic plane geometries, whose axiomatic systems are categorical. Finally, we will present the real cartesian plane and Poincaré half plane as models for the Euclidean and hyperbolic geometries, respectively.Universidade de Aveiro2011-04-19T14:29:39Z2007-01-01T00:00:00Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/2890porLopes, Marta da Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:01:25Zoai:ria.ua.pt:10773/2890Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:41:12.912155Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Geometrias planas |
title |
Geometrias planas |
spellingShingle |
Geometrias planas Lopes, Marta da Silva Geometria plana Geometria euclideana |
title_short |
Geometrias planas |
title_full |
Geometrias planas |
title_fullStr |
Geometrias planas |
title_full_unstemmed |
Geometrias planas |
title_sort |
Geometrias planas |
author |
Lopes, Marta da Silva |
author_facet |
Lopes, Marta da Silva |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lopes, Marta da Silva |
dc.subject.por.fl_str_mv |
Geometria plana Geometria euclideana |
topic |
Geometria plana Geometria euclideana |
description |
Um sistema axiomático é uma estrutura lógica organizada constituída por termos primitivos, axiomas, termos definidos, um sistema de regras de inferência e teoremas ou proposições. Um modelo para um sistema axiomático é uma interpretação desse sistema, consistindo na atribuição de significados particulares aos termos primitivos, de modo a que os axiomas, lidos à luz desta interpretação, se tornem proposições verdadeiras. No presente trabalho apresentamos uma hierarquização de geometrias planas, desde as geometrias abstractas até às geometrias neutras ou absolutas. Faremos uma breve referência às geometrias Euclidiana e hiperbólica planas, cujos sistemas axiomáticos são categóricos. Por fim, apresentaremos o plano cartesiano real e o semiplano de Poincaré como modelos para as geometrias Euclidiana e hiperbólica, respectivamente. ABSTRACT: An axiomatic system is an organized logical structure consisting of undefined terms, axioms, defined terms, a system of inference rules and theorems. A model for an axiomatic system is an interpretation of this system, consisting of the attribution of particular meanings to the undefined terms, in order that the axioms, read in the light of this interpretation, become true propositions. In this work we will present plane geometries, from abstract to neutral or absolute geometries. We will make a brief reference to Euclidean and hyperbolic plane geometries, whose axiomatic systems are categorical. Finally, we will present the real cartesian plane and Poincaré half plane as models for the Euclidean and hyperbolic geometries, respectively. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01T00:00:00Z 2007 2011-04-19T14:29:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/2890 |
url |
http://hdl.handle.net/10773/2890 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137460527038464 |