Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/13008 |
Resumo: | The construction of infrastructures inside water channels has always been challenging for engineers. Concerning bridge piers, concerns about local scour and morphology changes induced by the pier are ever-present. With the recent computational advancements, numerical tools have played a fundamental role in understanding flow hydrodynamics. As such, this work resorts to the ANSYS Fluent software to analyse the Ebro River meander flow field and the effects caused by the large and complex pier of the Zaragoza Bridge Pavilion. The shape, size, and skewed position of the pier relative to the flow make the flow-structure interaction unique to this case. Initially, an inviscid model is used to provide qualitative insight into the flow field over the 5000 m long and 200 m wide domain, with a maximum water depth of 8 m. For this case, the natural bed topography is considered. Afterwards, a 1/62.5 scaled model is used for the turbulence modelling, considering a representative geometry of the meander. The RANS equations are solved using the Standard k - e turbulence model. The results are compared with previous experimental work and field surveys after the numerical validation. The results show that the core of high velocities along the bend is directed toward the outer bank. Under the right span of the bridge, a velocity increase of up to 50% is seen. On the left side, the velocity increase is less pronounced. Downstream of the pier, the wake region is detected, and the vortex pair is also present. Turbulence kinetic energy results show peak values close to the bed, under the right span of the pier. Bed shear stress results show a twofold general increase in the vicinity of the pier and a five times increase on the right side. Secondary currents are detected along the bend, with intensities up to 12% of the streamwise velocity at the 115? section. Then, the intensity starts to decrease toward the bend exit. The secondary current rapidly decays along the straight reach until a weak flux toward the inner bank replaces it. |
id |
RCAP_f395281d77647d7997f0efc091ba6071 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/13008 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge PavilionDinâmica de Fluidos ComputacionalErosão LocalizadaEscoamento SecundárioPilar ComplexoDomínio/Área Científica::Engenharia e Tecnologia::Engenharia CivilThe construction of infrastructures inside water channels has always been challenging for engineers. Concerning bridge piers, concerns about local scour and morphology changes induced by the pier are ever-present. With the recent computational advancements, numerical tools have played a fundamental role in understanding flow hydrodynamics. As such, this work resorts to the ANSYS Fluent software to analyse the Ebro River meander flow field and the effects caused by the large and complex pier of the Zaragoza Bridge Pavilion. The shape, size, and skewed position of the pier relative to the flow make the flow-structure interaction unique to this case. Initially, an inviscid model is used to provide qualitative insight into the flow field over the 5000 m long and 200 m wide domain, with a maximum water depth of 8 m. For this case, the natural bed topography is considered. Afterwards, a 1/62.5 scaled model is used for the turbulence modelling, considering a representative geometry of the meander. The RANS equations are solved using the Standard k - e turbulence model. The results are compared with previous experimental work and field surveys after the numerical validation. The results show that the core of high velocities along the bend is directed toward the outer bank. Under the right span of the bridge, a velocity increase of up to 50% is seen. On the left side, the velocity increase is less pronounced. Downstream of the pier, the wake region is detected, and the vortex pair is also present. Turbulence kinetic energy results show peak values close to the bed, under the right span of the pier. Bed shear stress results show a twofold general increase in the vicinity of the pier and a five times increase on the right side. Secondary currents are detected along the bend, with intensities up to 12% of the streamwise velocity at the 115? section. Then, the intensity starts to decrease toward the bend exit. The secondary current rapidly decays along the straight reach until a weak flux toward the inner bank replaces it.A construção de infraestruturas com componentes dentro de cursos de água sempre foi um desafio para os engenheiros. No caso de pilares de pontes em leitos aluvionares, em particular, são constantes as preocupações sobre erosões localizadas e alterações morfológicas induzidas pelo pilar. Com os recentes avanços computacionais, as ferramentas numéricas têm desempenhado um papel fundamental na compreensão da hidrodinâmica dos escoamentos. Assim, este trabalho faz uso do programa ANSYS Fluent para analisar o campo de escoamentos do meandro do Rio Ebro e os efeitos causados pelo pilar complexo do Pavilhão-Ponte de Zaragoza. A sua forma, dimensão e posicionamento enviesado em relação ao escoamento fazem com que a interação estrutura-escoamento tenha um comportamento único. Inicialmente, um modelo invíscido é aplicado para uma compreensão qualitativa do campo de escoamento, ao longo de um domínio de 5000 m de comprimento, 200 m de largura e com uma profundidade máxima de escoamento de 8 m. Para este caso, a topografia real do meandro é considerada. A seguir, um modelo reduzido à escala 1/62.5 é utilizado para modelar a turbulência, considerando uma geometria representativa do meandro. As equações RANS são resolvidas com recurso ao modelo de turbulência Standard k-e. Após a validação numérica, os resultados obtidos são comparados com trabalhos experimentais e de campo. Os resultados mostram que ao longo da curva, as velocidades mais elevadas estão concentradas no extradorso. No vão direito da ponte, verifica-se um aumento da velocidade de 50%. No vão esquerdo, o aumento da velocidade não é tão pronunciado. A jusante do pilar, é detetada a esteira e o par de vórtices também está presente. A energia cinética turbulenta exibe valores de pico próximos do leito, sob o vão direito do pilar. As tensões de corte no leito mostram um aumento generalizado de pelo menos o dobro na zona próxima ao pilar e, um aumento de 5 vezes no lado direito. Também são detetadas correntes secundárias ao longo da curva, com intensidades de até 12% do valor da velocidade longitudinal na secção correspondente a 115? . A seguir, a sua intensidade diminui em direção à saída da curva. Ao longo do troço reto, o escoamento secundário decai rapidamente, até ser substituído por um fluxo de baixa intensidade em direção à margem interna.Fael, Cristina Maria SenaMartín-Vide, Juan PedrouBibliorumSantos, César Augusto Vaz2023-02-17T16:31:22Z2022-11-232022-10-072022-11-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/13008TID:203225724enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:56:26Zoai:ubibliorum.ubi.pt:10400.6/13008Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:52:31.820713Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion |
title |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion |
spellingShingle |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion Santos, César Augusto Vaz Dinâmica de Fluidos Computacional Erosão Localizada Escoamento Secundário Pilar Complexo Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
title_short |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion |
title_full |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion |
title_fullStr |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion |
title_full_unstemmed |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion |
title_sort |
Numerical Analysis of the Ebro River Meander Flow Field, Upstream of the Bridge Pavilion |
author |
Santos, César Augusto Vaz |
author_facet |
Santos, César Augusto Vaz |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fael, Cristina Maria Sena Martín-Vide, Juan Pedro uBibliorum |
dc.contributor.author.fl_str_mv |
Santos, César Augusto Vaz |
dc.subject.por.fl_str_mv |
Dinâmica de Fluidos Computacional Erosão Localizada Escoamento Secundário Pilar Complexo Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
topic |
Dinâmica de Fluidos Computacional Erosão Localizada Escoamento Secundário Pilar Complexo Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
description |
The construction of infrastructures inside water channels has always been challenging for engineers. Concerning bridge piers, concerns about local scour and morphology changes induced by the pier are ever-present. With the recent computational advancements, numerical tools have played a fundamental role in understanding flow hydrodynamics. As such, this work resorts to the ANSYS Fluent software to analyse the Ebro River meander flow field and the effects caused by the large and complex pier of the Zaragoza Bridge Pavilion. The shape, size, and skewed position of the pier relative to the flow make the flow-structure interaction unique to this case. Initially, an inviscid model is used to provide qualitative insight into the flow field over the 5000 m long and 200 m wide domain, with a maximum water depth of 8 m. For this case, the natural bed topography is considered. Afterwards, a 1/62.5 scaled model is used for the turbulence modelling, considering a representative geometry of the meander. The RANS equations are solved using the Standard k - e turbulence model. The results are compared with previous experimental work and field surveys after the numerical validation. The results show that the core of high velocities along the bend is directed toward the outer bank. Under the right span of the bridge, a velocity increase of up to 50% is seen. On the left side, the velocity increase is less pronounced. Downstream of the pier, the wake region is detected, and the vortex pair is also present. Turbulence kinetic energy results show peak values close to the bed, under the right span of the pier. Bed shear stress results show a twofold general increase in the vicinity of the pier and a five times increase on the right side. Secondary currents are detected along the bend, with intensities up to 12% of the streamwise velocity at the 115? section. Then, the intensity starts to decrease toward the bend exit. The secondary current rapidly decays along the straight reach until a weak flux toward the inner bank replaces it. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-23 2022-10-07 2022-11-23T00:00:00Z 2023-02-17T16:31:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/13008 TID:203225724 |
url |
http://hdl.handle.net/10400.6/13008 |
identifier_str_mv |
TID:203225724 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136413514465280 |