Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-20062023-140944/ |
Resumo: | Esta dissertação possui como fio condutor a seguinte conjectura, proposta por Y. Han em 2006 e ainda não solucionada, acerca de álgebras de dimensão finita: se a dimensão da homologia de Hochschild é finita, então a dimensão global também é finita. Assim, iniciamos o texto com um capítulo introdutório sobre os dois conceitos de Álgebra Homológica --- e algumas das ferramentas da área --- que concernem a conjectura. Em seguida, apresentamos um panorama considerável dos métodos utilizados para se tratar do problema e detalhamos as diversas respostas parciais obtidas ao longo nas últimas décadas. Tais trabalhos podem ser enquadrados em dois tipos. O primeiro deles está relacionado em encontrar exemplos que satisfazem o problema --- por exemplo, sua validade já foi verificada para álgebras comutativas, monomiais e de grupos. Em uma segunda direção, mostrou-se mais recentemente que certas extensões de álgebras preservam a conjectura de Han. Em seguida, propomos tratar o problema por meio de um terceiro ponto de vista: investigar, além do mundo das álgebras de dimensão finita, limites superiores para o reino das álgebras que satisfazem a propriedade acima. Para tanto, buscamos estudar a homologia de álgebras pseudocompactas, isto é, álgebras topológicas que são limites de álgebras de dimensão finita. Em especial, mostramos que certos resultados sobre a dimensão global de álgebras de dimensão finita continuam válidos nesse mundo e verificamos que a conjectura de Han é válida para certas classes de álgebras de grupos profinitos. |
id |
USP_07dac0ce6e55e93a6f2d49085b64712f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20062023-140944 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de HanHomology of pseudocompact algebras: the frontiers of Han\'s conjectureÁlgebras associativasÁlgebras pseudocompactasAssociative algebrasConjectura de HanDimensão globalGlobal dimensionGrupos profinitosHan's conjectureHochschild homologyHomologia de HochschildProfinite groupsPseudocompact algebrasEsta dissertação possui como fio condutor a seguinte conjectura, proposta por Y. Han em 2006 e ainda não solucionada, acerca de álgebras de dimensão finita: se a dimensão da homologia de Hochschild é finita, então a dimensão global também é finita. Assim, iniciamos o texto com um capítulo introdutório sobre os dois conceitos de Álgebra Homológica --- e algumas das ferramentas da área --- que concernem a conjectura. Em seguida, apresentamos um panorama considerável dos métodos utilizados para se tratar do problema e detalhamos as diversas respostas parciais obtidas ao longo nas últimas décadas. Tais trabalhos podem ser enquadrados em dois tipos. O primeiro deles está relacionado em encontrar exemplos que satisfazem o problema --- por exemplo, sua validade já foi verificada para álgebras comutativas, monomiais e de grupos. Em uma segunda direção, mostrou-se mais recentemente que certas extensões de álgebras preservam a conjectura de Han. Em seguida, propomos tratar o problema por meio de um terceiro ponto de vista: investigar, além do mundo das álgebras de dimensão finita, limites superiores para o reino das álgebras que satisfazem a propriedade acima. Para tanto, buscamos estudar a homologia de álgebras pseudocompactas, isto é, álgebras topológicas que são limites de álgebras de dimensão finita. Em especial, mostramos que certos resultados sobre a dimensão global de álgebras de dimensão finita continuam válidos nesse mundo e verificamos que a conjectura de Han é válida para certas classes de álgebras de grupos profinitos.The main thread of this dissertation is the following unsolved conjecture, proposed by Y. Han in 2006, concerning finite-dimensional algebras: if Hochschild homology dimension if finite, then global dimension is also finite. The text begins with an introductory chapter about both concepts of Homological Algebra concerning Han\'s conjecture. We then present a considerable overview of the methods used to address the problem and we give details on the various partial answers obtained over the past decades. Such works can be classified in two types. The first one is concerned in finding examples satisfying the conjecture - which have been seen to include commutative, monomial, Koszul, and group algebras. In a second direction, it has been shown, more recently, that certain extensions of algebras preserves Han\'s conjecture. Next, we propose to address the problem through a third viewpoint: to investigate, beyond the finite-dimensional scope, upper bounds for the realm of algebras satisfying it. To do so, we chose to study the homology of pseudocompact algebras, that is, topological algebras which are given by a limit of finite-dimensional algebras. In particular, we show that certain results about the global dimension of finite-dimensional algebras remain valid in this world, and we verify that Han\'s conjecture holds for certain classes of profinite group algebras.Biblioteca Digitais de Teses e Dissertações da USPIusenko, KostiantynCruz, Guilherme da Costa2023-06-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-20062023-140944/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-06-20T21:18:30Zoai:teses.usp.br:tde-20062023-140944Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-06-20T21:18:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han Homology of pseudocompact algebras: the frontiers of Han\'s conjecture |
title |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han |
spellingShingle |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han Cruz, Guilherme da Costa Álgebras associativas Álgebras pseudocompactas Associative algebras Conjectura de Han Dimensão global Global dimension Grupos profinitos Han's conjecture Hochschild homology Homologia de Hochschild Profinite groups Pseudocompact algebras |
title_short |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han |
title_full |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han |
title_fullStr |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han |
title_full_unstemmed |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han |
title_sort |
Homologia de álgebras pseudocompactas: as fronteiras da conjectura de Han |
author |
Cruz, Guilherme da Costa |
author_facet |
Cruz, Guilherme da Costa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Iusenko, Kostiantyn |
dc.contributor.author.fl_str_mv |
Cruz, Guilherme da Costa |
dc.subject.por.fl_str_mv |
Álgebras associativas Álgebras pseudocompactas Associative algebras Conjectura de Han Dimensão global Global dimension Grupos profinitos Han's conjecture Hochschild homology Homologia de Hochschild Profinite groups Pseudocompact algebras |
topic |
Álgebras associativas Álgebras pseudocompactas Associative algebras Conjectura de Han Dimensão global Global dimension Grupos profinitos Han's conjecture Hochschild homology Homologia de Hochschild Profinite groups Pseudocompact algebras |
description |
Esta dissertação possui como fio condutor a seguinte conjectura, proposta por Y. Han em 2006 e ainda não solucionada, acerca de álgebras de dimensão finita: se a dimensão da homologia de Hochschild é finita, então a dimensão global também é finita. Assim, iniciamos o texto com um capítulo introdutório sobre os dois conceitos de Álgebra Homológica --- e algumas das ferramentas da área --- que concernem a conjectura. Em seguida, apresentamos um panorama considerável dos métodos utilizados para se tratar do problema e detalhamos as diversas respostas parciais obtidas ao longo nas últimas décadas. Tais trabalhos podem ser enquadrados em dois tipos. O primeiro deles está relacionado em encontrar exemplos que satisfazem o problema --- por exemplo, sua validade já foi verificada para álgebras comutativas, monomiais e de grupos. Em uma segunda direção, mostrou-se mais recentemente que certas extensões de álgebras preservam a conjectura de Han. Em seguida, propomos tratar o problema por meio de um terceiro ponto de vista: investigar, além do mundo das álgebras de dimensão finita, limites superiores para o reino das álgebras que satisfazem a propriedade acima. Para tanto, buscamos estudar a homologia de álgebras pseudocompactas, isto é, álgebras topológicas que são limites de álgebras de dimensão finita. Em especial, mostramos que certos resultados sobre a dimensão global de álgebras de dimensão finita continuam válidos nesse mundo e verificamos que a conjectura de Han é válida para certas classes de álgebras de grupos profinitos. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-20062023-140944/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-20062023-140944/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257159237107712 |