Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation

Detalhes bibliográficos
Autor(a) principal: Bhrawy, A. H.
Data de Publicação: 2015
Outros Autores: Zaky, M.A., Machado, J. A. Tenreiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/6955
Resumo: In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
id RCAP_f6d4ffc1c5c2746c421367ae5daef2e0
oai_identifier_str oai:recipp.ipp.pt:10400.22/6955
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equationFractional advection–dispersion equationTau methodShifted Legendre polynomialsOperational matrixTwo-sided Caputo derivativeRiemann–Liouville fractional integralIn this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.SAGE journalsRepositório Científico do Instituto Politécnico do PortoBhrawy, A. H.Zaky, M.A.Machado, J. A. Tenreiro2015-11-19T17:23:02Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/6955eng10.1177/1077546314566835info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:47:16Zoai:recipp.ipp.pt:10400.22/6955Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:27:23.062514Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation
title Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation
spellingShingle Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation
Bhrawy, A. H.
Fractional advection–dispersion equation
Tau method
Shifted Legendre polynomials
Operational matrix
Two-sided Caputo derivative
Riemann–Liouville fractional integral
title_short Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation
title_full Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation
title_fullStr Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation
title_full_unstemmed Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation
title_sort Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation
author Bhrawy, A. H.
author_facet Bhrawy, A. H.
Zaky, M.A.
Machado, J. A. Tenreiro
author_role author
author2 Zaky, M.A.
Machado, J. A. Tenreiro
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Bhrawy, A. H.
Zaky, M.A.
Machado, J. A. Tenreiro
dc.subject.por.fl_str_mv Fractional advection–dispersion equation
Tau method
Shifted Legendre polynomials
Operational matrix
Two-sided Caputo derivative
Riemann–Liouville fractional integral
topic Fractional advection–dispersion equation
Tau method
Shifted Legendre polynomials
Operational matrix
Two-sided Caputo derivative
Riemann–Liouville fractional integral
description In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-19T17:23:02Z
2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/6955
url http://hdl.handle.net/10400.22/6955
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1177/1077546314566835
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SAGE journals
publisher.none.fl_str_mv SAGE journals
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131369223225344