Estabilidade e regularidade de matrizes de Toeplitz

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Cátia Sofia Nunes
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/2888
Resumo: A presente dissertação teve por embrião o problema clássico inerente às possíveis soluções de sistemas de equações lineares, designadamente enquanto escrito na correspondente formulação matricial. A resolução de sistemas de equações lineares infinitos da forma Ax=y, onde A é uma matriz infinita, envolve por exemplo questões delicadas de convergência e de estabilidade, dependendo do tipo de matriz associada a A . Tal é o caso quando se aplica o designado método da secção finita para a descoberta de propriedades inerentes ao original sistema infinito via consideração de uma sucessão de sistemas finitos. Na presente dissertação tais questões são abordadas especialmente para matrizes do tipo de Toeplitz e de Hankel. De uma forma mais global, estas matrizes são também consideradas na presente dissertação enquanto operadores lineares actuando entre determinados espaços de Banach. Sob esta abordagem da Teoria de Operadores, especial relevo é dado para a situação dos designados operadores de Toeplitz com símbolos na álgebra de Wiener. São descritas teorias de factorização para várias classes de símbolos que levam a consequentes factorizações de operadores – na sua maioria aplicadas a operadores do tipo de Toeplitz. Adicionalmente, propriedades espectrais e de Fredholm são também abordadas para os operadores/matrizes de Toeplitz. ABSTRACT: The current dissertation had as origin the classical problem inherent to the possible solution of linear equation’s systems, namely while written in the correspondent matrice’s formulation. The resolution of infinite systems of linear equations like Ax=y, where A is an infinite matrix, involves for instance delicate questions of convergence and stability, depending on the kind of matrix associated to A . This is the case of the finite section’s method, which is used to find the inherent properties of the original infinite system regarding the sequences of finite systems. In the current essay such questions are especially formulated for Toeplitz and Hankel matrices. In a more general way, these matrices are also considered in this essay while linear operators acting between some of Banach spaces. Under this Operator Theory approach, special attention is given to the Toeplitz operators which use symbols in the Wiener algebra. Factorization theories are described for several classes of symbols which lead to the operators factorizations – in its majority applied to Toeplitz like operators. Additionally, spectral and Fredholm properties are also described for the Toeplitz operators or matrices.
id RCAP_f8e169bff302d97971e5f856839f02a8
oai_identifier_str oai:ria.ua.pt:10773/2888
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Estabilidade e regularidade de matrizes de ToeplitzMatemáticaMatrizes de ToeplitzOperadores de ToeplitzEstabilidade (Matemática)Convergência (Matemática)A presente dissertação teve por embrião o problema clássico inerente às possíveis soluções de sistemas de equações lineares, designadamente enquanto escrito na correspondente formulação matricial. A resolução de sistemas de equações lineares infinitos da forma Ax=y, onde A é uma matriz infinita, envolve por exemplo questões delicadas de convergência e de estabilidade, dependendo do tipo de matriz associada a A . Tal é o caso quando se aplica o designado método da secção finita para a descoberta de propriedades inerentes ao original sistema infinito via consideração de uma sucessão de sistemas finitos. Na presente dissertação tais questões são abordadas especialmente para matrizes do tipo de Toeplitz e de Hankel. De uma forma mais global, estas matrizes são também consideradas na presente dissertação enquanto operadores lineares actuando entre determinados espaços de Banach. Sob esta abordagem da Teoria de Operadores, especial relevo é dado para a situação dos designados operadores de Toeplitz com símbolos na álgebra de Wiener. São descritas teorias de factorização para várias classes de símbolos que levam a consequentes factorizações de operadores – na sua maioria aplicadas a operadores do tipo de Toeplitz. Adicionalmente, propriedades espectrais e de Fredholm são também abordadas para os operadores/matrizes de Toeplitz. ABSTRACT: The current dissertation had as origin the classical problem inherent to the possible solution of linear equation’s systems, namely while written in the correspondent matrice’s formulation. The resolution of infinite systems of linear equations like Ax=y, where A is an infinite matrix, involves for instance delicate questions of convergence and stability, depending on the kind of matrix associated to A . This is the case of the finite section’s method, which is used to find the inherent properties of the original infinite system regarding the sequences of finite systems. In the current essay such questions are especially formulated for Toeplitz and Hankel matrices. In a more general way, these matrices are also considered in this essay while linear operators acting between some of Banach spaces. Under this Operator Theory approach, special attention is given to the Toeplitz operators which use symbols in the Wiener algebra. Factorization theories are described for several classes of symbols which lead to the operators factorizations – in its majority applied to Toeplitz like operators. Additionally, spectral and Fredholm properties are also described for the Toeplitz operators or matrices.Universidade de Aveiro2011-04-19T14:29:37Z2007-01-01T00:00:00Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/2888porRodrigues, Cátia Sofia Nunesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T03:30:48Zoai:ria.ua.pt:10773/2888Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T03:30:48Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Estabilidade e regularidade de matrizes de Toeplitz
title Estabilidade e regularidade de matrizes de Toeplitz
spellingShingle Estabilidade e regularidade de matrizes de Toeplitz
Rodrigues, Cátia Sofia Nunes
Matemática
Matrizes de Toeplitz
Operadores de Toeplitz
Estabilidade (Matemática)
Convergência (Matemática)
title_short Estabilidade e regularidade de matrizes de Toeplitz
title_full Estabilidade e regularidade de matrizes de Toeplitz
title_fullStr Estabilidade e regularidade de matrizes de Toeplitz
title_full_unstemmed Estabilidade e regularidade de matrizes de Toeplitz
title_sort Estabilidade e regularidade de matrizes de Toeplitz
author Rodrigues, Cátia Sofia Nunes
author_facet Rodrigues, Cátia Sofia Nunes
author_role author
dc.contributor.author.fl_str_mv Rodrigues, Cátia Sofia Nunes
dc.subject.por.fl_str_mv Matemática
Matrizes de Toeplitz
Operadores de Toeplitz
Estabilidade (Matemática)
Convergência (Matemática)
topic Matemática
Matrizes de Toeplitz
Operadores de Toeplitz
Estabilidade (Matemática)
Convergência (Matemática)
description A presente dissertação teve por embrião o problema clássico inerente às possíveis soluções de sistemas de equações lineares, designadamente enquanto escrito na correspondente formulação matricial. A resolução de sistemas de equações lineares infinitos da forma Ax=y, onde A é uma matriz infinita, envolve por exemplo questões delicadas de convergência e de estabilidade, dependendo do tipo de matriz associada a A . Tal é o caso quando se aplica o designado método da secção finita para a descoberta de propriedades inerentes ao original sistema infinito via consideração de uma sucessão de sistemas finitos. Na presente dissertação tais questões são abordadas especialmente para matrizes do tipo de Toeplitz e de Hankel. De uma forma mais global, estas matrizes são também consideradas na presente dissertação enquanto operadores lineares actuando entre determinados espaços de Banach. Sob esta abordagem da Teoria de Operadores, especial relevo é dado para a situação dos designados operadores de Toeplitz com símbolos na álgebra de Wiener. São descritas teorias de factorização para várias classes de símbolos que levam a consequentes factorizações de operadores – na sua maioria aplicadas a operadores do tipo de Toeplitz. Adicionalmente, propriedades espectrais e de Fredholm são também abordadas para os operadores/matrizes de Toeplitz. ABSTRACT: The current dissertation had as origin the classical problem inherent to the possible solution of linear equation’s systems, namely while written in the correspondent matrice’s formulation. The resolution of infinite systems of linear equations like Ax=y, where A is an infinite matrix, involves for instance delicate questions of convergence and stability, depending on the kind of matrix associated to A . This is the case of the finite section’s method, which is used to find the inherent properties of the original infinite system regarding the sequences of finite systems. In the current essay such questions are especially formulated for Toeplitz and Hankel matrices. In a more general way, these matrices are also considered in this essay while linear operators acting between some of Banach spaces. Under this Operator Theory approach, special attention is given to the Toeplitz operators which use symbols in the Wiener algebra. Factorization theories are described for several classes of symbols which lead to the operators factorizations – in its majority applied to Toeplitz like operators. Additionally, spectral and Fredholm properties are also described for the Toeplitz operators or matrices.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01T00:00:00Z
2007
2011-04-19T14:29:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/2888
url http://hdl.handle.net/10773/2888
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543388202795008