Orthogonal polynomial interpretation of Delta-Toda equations

Detalhes bibliográficos
Autor(a) principal: Branquinho, A.
Data de Publicação: 2015
Outros Autores: Moreno, A. Foulquié, Godoy, E., Area, I.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15122
Resumo: The correspondence between dynamics of Delta-Toda equations for the coefficients of the Jacobi operator and its resolvent function is established. A method to solve inverse problem - integration of Delta-Toda equations - based on Padé approximates and continued fractions for the resolvent function is proposed. The main ingredient are orthogonal polynomials which satisfy an Appell condition, with respect to the forward difference operator Delta. Two examples related with Jacobi and Laguerre orthogonal polynomials and Delta-Toda equations are given.
id RCAP_fbe5599c2fb049b6ba4108818c9f3e78
oai_identifier_str oai:ria.ua.pt:10773/15122
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Orthogonal polynomial interpretation of Delta-Toda equationsOrthogonal polynomialsDifference operatorsOperator theoryToda latticesThe correspondence between dynamics of Delta-Toda equations for the coefficients of the Jacobi operator and its resolvent function is established. A method to solve inverse problem - integration of Delta-Toda equations - based on Padé approximates and continued fractions for the resolvent function is proposed. The main ingredient are orthogonal polynomials which satisfy an Appell condition, with respect to the forward difference operator Delta. Two examples related with Jacobi and Laguerre orthogonal polynomials and Delta-Toda equations are given.IOP Publising2018-07-20T14:00:51Z2015-10-09T00:00:00Z2015-10-092016-10-08T14:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15122eng1751-811310.1088/1751-8113/48/40/405206Branquinho, A.Moreno, A. FoulquiéGodoy, E.Area, I.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:54Zoai:ria.ua.pt:10773/15122Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:33.176727Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Orthogonal polynomial interpretation of Delta-Toda equations
title Orthogonal polynomial interpretation of Delta-Toda equations
spellingShingle Orthogonal polynomial interpretation of Delta-Toda equations
Branquinho, A.
Orthogonal polynomials
Difference operators
Operator theory
Toda lattices
title_short Orthogonal polynomial interpretation of Delta-Toda equations
title_full Orthogonal polynomial interpretation of Delta-Toda equations
title_fullStr Orthogonal polynomial interpretation of Delta-Toda equations
title_full_unstemmed Orthogonal polynomial interpretation of Delta-Toda equations
title_sort Orthogonal polynomial interpretation of Delta-Toda equations
author Branquinho, A.
author_facet Branquinho, A.
Moreno, A. Foulquié
Godoy, E.
Area, I.
author_role author
author2 Moreno, A. Foulquié
Godoy, E.
Area, I.
author2_role author
author
author
dc.contributor.author.fl_str_mv Branquinho, A.
Moreno, A. Foulquié
Godoy, E.
Area, I.
dc.subject.por.fl_str_mv Orthogonal polynomials
Difference operators
Operator theory
Toda lattices
topic Orthogonal polynomials
Difference operators
Operator theory
Toda lattices
description The correspondence between dynamics of Delta-Toda equations for the coefficients of the Jacobi operator and its resolvent function is established. A method to solve inverse problem - integration of Delta-Toda equations - based on Padé approximates and continued fractions for the resolvent function is proposed. The main ingredient are orthogonal polynomials which satisfy an Appell condition, with respect to the forward difference operator Delta. Two examples related with Jacobi and Laguerre orthogonal polynomials and Delta-Toda equations are given.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-09T00:00:00Z
2015-10-09
2016-10-08T14:00:00Z
2018-07-20T14:00:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15122
url http://hdl.handle.net/10773/15122
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1751-8113
10.1088/1751-8113/48/40/405206
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOP Publising
publisher.none.fl_str_mv IOP Publising
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137555224985600