Deep Semantic Learning Machine Initial design and experiments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/123465 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_fd6a08533ff4522396376f391950dc4b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/123465 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Deep Semantic Learning Machine Initial design and experimentsNeural networksNeuroevolutionGenetic programmingConvolution neural networksImage classificationHeuristic searchNetwork topologiesDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsComputer vision is an interdisciplinary scientific field that allows the digital world to interact with the real world. It is one of the fastest-growing and most important areas of data science. Applications are endless, given various tasks that can be solved thanks to the advances in the computer vision field. Examples of types of tasks that can be solved thanks to computer vision models are: image analysis, object detection, image transformation, and image generation. Having that many applications is vital for providing models with the best possible performance. Although many years have passed since backpropagation was invented, it is still the most commonly used approach of training neural networks. A satisfactory performance can be achieved with this approach, but is it the best it can get? A fixed topology of a neural network that needs to be defined before any training begins seems to be a significant limitation as the performance of a network is highly dependent on the topology. Since there are no studies that would precisely guide scientists on selecting a proper network structure, the ability to adjust a topology to a problem seems highly promising. Initial ideas of the evolution of neural networks that involve heuristic search methods have provided encouragingly good results for the various reinforcement learning task. This thesis presents the initial experiments on the usage of a similar approach to solve image classification tasks. The new model called Deep Semantic Learning Machine is introduced with a new mutation method specially designed to solve computer vision problems. Deep Semantic Learning Machine allows a topology to evolve from a small network and adjust to a given problem. The initial results are pretty promising, especially in a training dataset. However, in this thesis Deep Semantic Learning Machine was developed only as proof of a concept and further improvements to the approach can be made.Castelli, MauroGonçalves, Ivo Carlos PereiraRUNPiastka, Konrad2021-08-31T14:23:08Z2021-07-202021-07-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/123465TID:202759547enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:04:48Zoai:run.unl.pt:10362/123465Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:45:03.607025Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Deep Semantic Learning Machine Initial design and experiments |
title |
Deep Semantic Learning Machine Initial design and experiments |
spellingShingle |
Deep Semantic Learning Machine Initial design and experiments Piastka, Konrad Neural networks Neuroevolution Genetic programming Convolution neural networks Image classification Heuristic search Network topologies |
title_short |
Deep Semantic Learning Machine Initial design and experiments |
title_full |
Deep Semantic Learning Machine Initial design and experiments |
title_fullStr |
Deep Semantic Learning Machine Initial design and experiments |
title_full_unstemmed |
Deep Semantic Learning Machine Initial design and experiments |
title_sort |
Deep Semantic Learning Machine Initial design and experiments |
author |
Piastka, Konrad |
author_facet |
Piastka, Konrad |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro Gonçalves, Ivo Carlos Pereira RUN |
dc.contributor.author.fl_str_mv |
Piastka, Konrad |
dc.subject.por.fl_str_mv |
Neural networks Neuroevolution Genetic programming Convolution neural networks Image classification Heuristic search Network topologies |
topic |
Neural networks Neuroevolution Genetic programming Convolution neural networks Image classification Heuristic search Network topologies |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-31T14:23:08Z 2021-07-20 2021-07-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/123465 TID:202759547 |
url |
http://hdl.handle.net/10362/123465 |
identifier_str_mv |
TID:202759547 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138056911978496 |