An infinite dimensional umbral calculus

Detalhes bibliográficos
Autor(a) principal: Finkelshtein, Dmitri L.
Data de Publicação: 2019
Outros Autores: Kondratiev, Yuri G., Lytvynov, Eugene, Oliveira, Maria João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.2/8369
Resumo: The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role.
id RCAP_ffae3c5c470769c2cafb2638eec3aeaa
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/8369
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An infinite dimensional umbral calculusGenerating functionPolynomial sequence on D'Polynomial sequence of binomial type on D'Sheffer sequence on D'Shift-invarianceUmbral calculus on D'The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role.ElvevierRepositório AbertoFinkelshtein, Dmitri L.Kondratiev, Yuri G.Lytvynov, EugeneOliveira, Maria João2019-07-01T13:55:11Z2019-06-162019-06-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/8369engFinkelshtein, Dmitri; [et al.] - An infinite dimensional umbral calculus. "Journal of. Functional Analysis" [Em linha]. ISSN 0022-1236. Vol. 276, nº 12 (2019), p. 3714-37660022-123610.1016/j.jfa.2019.03.006info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:29:43Zoai:repositorioaberto.uab.pt:10400.2/8369Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:48:25.991175Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An infinite dimensional umbral calculus
title An infinite dimensional umbral calculus
spellingShingle An infinite dimensional umbral calculus
Finkelshtein, Dmitri L.
Generating function
Polynomial sequence on D'
Polynomial sequence of binomial type on D'
Sheffer sequence on D'
Shift-invariance
Umbral calculus on D'
title_short An infinite dimensional umbral calculus
title_full An infinite dimensional umbral calculus
title_fullStr An infinite dimensional umbral calculus
title_full_unstemmed An infinite dimensional umbral calculus
title_sort An infinite dimensional umbral calculus
author Finkelshtein, Dmitri L.
author_facet Finkelshtein, Dmitri L.
Kondratiev, Yuri G.
Lytvynov, Eugene
Oliveira, Maria João
author_role author
author2 Kondratiev, Yuri G.
Lytvynov, Eugene
Oliveira, Maria João
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Finkelshtein, Dmitri L.
Kondratiev, Yuri G.
Lytvynov, Eugene
Oliveira, Maria João
dc.subject.por.fl_str_mv Generating function
Polynomial sequence on D'
Polynomial sequence of binomial type on D'
Sheffer sequence on D'
Shift-invariance
Umbral calculus on D'
topic Generating function
Polynomial sequence on D'
Polynomial sequence of binomial type on D'
Sheffer sequence on D'
Shift-invariance
Umbral calculus on D'
description The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-01T13:55:11Z
2019-06-16
2019-06-16T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/8369
url http://hdl.handle.net/10400.2/8369
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Finkelshtein, Dmitri; [et al.] - An infinite dimensional umbral calculus. "Journal of. Functional Analysis" [Em linha]. ISSN 0022-1236. Vol. 276, nº 12 (2019), p. 3714-3766
0022-1236
10.1016/j.jfa.2019.03.006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elvevier
publisher.none.fl_str_mv Elvevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135065118081024