An infinite dimensional umbral calculus
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/8369 |
Resumo: | The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role. |
id |
RCAP_ffae3c5c470769c2cafb2638eec3aeaa |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/8369 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An infinite dimensional umbral calculusGenerating functionPolynomial sequence on D'Polynomial sequence of binomial type on D'Sheffer sequence on D'Shift-invarianceUmbral calculus on D'The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role.ElvevierRepositório AbertoFinkelshtein, Dmitri L.Kondratiev, Yuri G.Lytvynov, EugeneOliveira, Maria João2019-07-01T13:55:11Z2019-06-162019-06-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/8369engFinkelshtein, Dmitri; [et al.] - An infinite dimensional umbral calculus. "Journal of. Functional Analysis" [Em linha]. ISSN 0022-1236. Vol. 276, nº 12 (2019), p. 3714-37660022-123610.1016/j.jfa.2019.03.006info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:29:43Zoai:repositorioaberto.uab.pt:10400.2/8369Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:48:25.991175Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An infinite dimensional umbral calculus |
title |
An infinite dimensional umbral calculus |
spellingShingle |
An infinite dimensional umbral calculus Finkelshtein, Dmitri L. Generating function Polynomial sequence on D' Polynomial sequence of binomial type on D' Sheffer sequence on D' Shift-invariance Umbral calculus on D' |
title_short |
An infinite dimensional umbral calculus |
title_full |
An infinite dimensional umbral calculus |
title_fullStr |
An infinite dimensional umbral calculus |
title_full_unstemmed |
An infinite dimensional umbral calculus |
title_sort |
An infinite dimensional umbral calculus |
author |
Finkelshtein, Dmitri L. |
author_facet |
Finkelshtein, Dmitri L. Kondratiev, Yuri G. Lytvynov, Eugene Oliveira, Maria João |
author_role |
author |
author2 |
Kondratiev, Yuri G. Lytvynov, Eugene Oliveira, Maria João |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Finkelshtein, Dmitri L. Kondratiev, Yuri G. Lytvynov, Eugene Oliveira, Maria João |
dc.subject.por.fl_str_mv |
Generating function Polynomial sequence on D' Polynomial sequence of binomial type on D' Sheffer sequence on D' Shift-invariance Umbral calculus on D' |
topic |
Generating function Polynomial sequence on D' Polynomial sequence of binomial type on D' Sheffer sequence on D' Shift-invariance Umbral calculus on D' |
description |
The aim of this paper is to develop foundations of umbral calculus on the space $\mathcal D'$ of distributions on $\mathbb R^d$, which leads to a general theory of Sheffer polynomial sequences on $\mathcal D'$. We define a sequence of monic polynomials on $\mathcal D'$, a polynomial sequence of binomial type, and a Sheffer sequence. We present equivalent conditions for a sequence of monic polynomials on $\mathcal D'$ to be of binomial type or a Sheffer sequence, respectively. We also construct a lifting of a sequence of monic polynomials on $\mathbb R$ of binomial type to a polynomial sequence of binomial type on $\mathcal D'$, and a lifting of a Sheffer sequence on $\mathbb R$ to a Sheffer sequence on $\mathcal D'$. Examples of lifted polynomial sequences include the falling and rising factorials on $\mathcal D'$, Abel, Hermite, Charlier, and Laguerre polynomials on $\mathcal D'$. Some of these polynomials have already appeared in different branches of infinite dimensional (stochastic) analysis and played there a fundamental role. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-01T13:55:11Z 2019-06-16 2019-06-16T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/8369 |
url |
http://hdl.handle.net/10400.2/8369 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Finkelshtein, Dmitri; [et al.] - An infinite dimensional umbral calculus. "Journal of. Functional Analysis" [Em linha]. ISSN 0022-1236. Vol. 276, nº 12 (2019), p. 3714-3766 0022-1236 10.1016/j.jfa.2019.03.006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elvevier |
publisher.none.fl_str_mv |
Elvevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135065118081024 |