Analysis of the use of pattern recognition networks in the application of intelligent electrical networks

Detalhes bibliográficos
Autor(a) principal: García Talledo, Raúl Andrés
Data de Publicação: 2022
Outros Autores: Cuenca Álava, Lenin
Tipo de documento: Artigo
Idioma: spa
Título da fonte: Sapienza (Curitiba)
Texto Completo: https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408
Resumo: Pattern recognition is based on recognizing the unique properties that identify an individual from others of the same species. The methodology was based on knowing the load and energy consumption generated by the Faculty of Mathematics, Physics and Chemistry of the Technical University of Manabí, in the same way the structure of "The Neural Net Pattern Recognition" was used. pattern recognition), which were trained to classify the inputs according to their classes, carried out using the Matlab R2017b software, with which the training of the network was done with different numbers of neurons in the hidden layer, where values ​​of 10,15,20,25 and 30 were used to obtain the lowest error, the following objectives were set: Know the load and the energy consumption that it generates in the FCMFQ, select the variable that will be established as inputs to the network, training of the smart network using the Matlab software and analyzing the results obtained with the training, The comparison between the different trainings of the network with the mentioned values ​​of the neurons was made, choosing to choose 30 neurons, obtaining the lowest error (0). In conclusion, the use of an intelligent electrical network with the implementation of the ANN technique is beneficial, since, if an intelligent electrical network is implemented throughout the UTM campus, it will be possible to obtain more profitable energy efficiency.
id SAPIENZA_4afcf97f19dedd489d84f76a76643ff7
oai_identifier_str oai:ojs2.journals.sapienzaeditorial.com:article/408
network_acronym_str SAPIENZA
network_name_str Sapienza (Curitiba)
repository_id_str
spelling Analysis of the use of pattern recognition networks in the application of intelligent electrical networksAnálisis del empleo de redes de reconocimiento de patrones en la aplicación de redes eléctricas inteligentesAnálise do uso de redes de reconhecimento de padrões na aplicação de redes elétricas inteligentesVariáveis de entrada, Consumo de energia, Reconhecimento de padrões da rede neuralInput variables, energy consumption, The Neural Net Pattern RecognitionVariables de entrada, Consumo energético, The Neural Net Pattern RecognitionPattern recognition is based on recognizing the unique properties that identify an individual from others of the same species. The methodology was based on knowing the load and energy consumption generated by the Faculty of Mathematics, Physics and Chemistry of the Technical University of Manabí, in the same way the structure of "The Neural Net Pattern Recognition" was used. pattern recognition), which were trained to classify the inputs according to their classes, carried out using the Matlab R2017b software, with which the training of the network was done with different numbers of neurons in the hidden layer, where values ​​of 10,15,20,25 and 30 were used to obtain the lowest error, the following objectives were set: Know the load and the energy consumption that it generates in the FCMFQ, select the variable that will be established as inputs to the network, training of the smart network using the Matlab software and analyzing the results obtained with the training, The comparison between the different trainings of the network with the mentioned values ​​of the neurons was made, choosing to choose 30 neurons, obtaining the lowest error (0). In conclusion, the use of an intelligent electrical network with the implementation of the ANN technique is beneficial, since, if an intelligent electrical network is implemented throughout the UTM campus, it will be possible to obtain more profitable energy efficiency.El reconocimiento de patrones se basa en el reconocer las propiedades únicas que identifican un individuo de los otros de la misma especie. La metodología se basó en conocer la carga y el consumo de energía que genera la facultad de Matemática, Física y Química de la Universidad Técnica de Manabí, de la misma forma se utilizó la estructura de “The Neural Net Pattern Recognition”, los cuales se entrenaron para clasificar las entradas según sus clases, realizado mediante el software Matlab R2017b, con el cual se hizo el entrenamiento de la red con diferentes números de neuronas en la capa oculta, donde se usaron valores de 10,15,20,25 y 30 para lograr obtener el error más bajo, se plantearon los siguientes objetivos: Conocer la carga y el consumo de energía que genera en la FCMFQ, seleccionar la variable que se van a establecer como entradas a la red, entrenamiento de la red inteligente mediante el software Matlab y analizar los resultados obtenidos con el entrenamiento, se realizó la comparación entre los diferentes entrenamientos de la red con los valores mencionados de las neuronas, optando por escoger 30 neuronas, obteniendo el error de más bajo (0).  Se concluye que la utilización de una red eléctrica inteligente con la implementación de la técnica de RNA es beneficiosa, ya que, si se implementa una red eléctrica inteligente a lo largo del campus de la UTM, se va a poder obtener una eficiencia energética más rentable.O reconhecimento de padrões baseia-se no reconhecimento das propriedades únicas que identificam um indivíduo de outros da mesma espécie. A metodologia foi baseada em conhecer a carga e o consumo de energia gerados pela Faculdade de Matemática, Física e Química da Universidade Técnica de Manabí, da mesma forma que foi utilizada a estrutura de "Reconhecimento de padrões de rede neural", que foram treinados para classificar as entradas de acordo com suas classes, realizadas utilizando o software Matlab R2017b, com o qual a rede foi treinada com diferentes números de neurônios na camada oculta, onde foram utilizados valores de 10,15,20,25 e 30. Em ordem para obter o menor erro foram estabelecidos os seguintes objetivos: Conhecer a carga e o consumo de energia que ela gera no FCMFQ, selecionar a variável que será estabelecida como entradas para a rede, treinar a rede inteligente através do software Matlab e analisar os resultados obtidos com o treinamento, foi feita a comparação entre os diferentes treinamentos da rede com os valores mencionados dos neurônios, optando por escolher 30 neurônios, obtendo o menor erro (0). Conclui-se que a utilização de uma rede elétrica inteligente com a implementação da técnica RNA é benéfica, pois, se uma rede elétrica inteligente for implementada em todo o campus UTM, será possível obter eficiência energética mais rentável.Sapienza Grupo Editorial2022-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/40810.51798/sijis.v3i2.408Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 2 (2022): Multidisciplinary Contributions; 816-825Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 2 (2022): Aportes Multidisciplinarios; 816-825Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 2 (2022): Contribuições Multidisciplinares; 816-8252675-978010.51798/sijis.v3i2reponame:Sapienza (Curitiba)instname:Sapienza Grupo Editorialinstacron:SAPIENZAspahttps://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408/269Copyright (c) 2022 Raúl Andrés García Talledo, Lenin Cuenca Álavahttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessGarcía Talledo, Raúl Andrés Cuenca Álava, Lenin 2022-12-26T21:19:06Zoai:ojs2.journals.sapienzaeditorial.com:article/408Revistahttps://journals.sapienzaeditorial.com/index.php/SIJISPRIhttps://journals.sapienzaeditorial.com/index.php/SIJIS/oaieditor@sapienzaeditorial.com2675-97802675-9780opendoar:2023-01-12T16:42:59.170468Sapienza (Curitiba) - Sapienza Grupo Editorialfalse
dc.title.none.fl_str_mv Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
Análisis del empleo de redes de reconocimiento de patrones en la aplicación de redes eléctricas inteligentes
Análise do uso de redes de reconhecimento de padrões na aplicação de redes elétricas inteligentes
title Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
spellingShingle Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
García Talledo, Raúl Andrés
Variáveis de entrada, Consumo de energia, Reconhecimento de padrões da rede neural
Input variables, energy consumption, The Neural Net Pattern Recognition
Variables de entrada, Consumo energético, The Neural Net Pattern Recognition
title_short Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
title_full Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
title_fullStr Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
title_full_unstemmed Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
title_sort Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
author García Talledo, Raúl Andrés
author_facet García Talledo, Raúl Andrés
Cuenca Álava, Lenin
author_role author
author2 Cuenca Álava, Lenin
author2_role author
dc.contributor.author.fl_str_mv García Talledo, Raúl Andrés
Cuenca Álava, Lenin
dc.subject.por.fl_str_mv Variáveis de entrada, Consumo de energia, Reconhecimento de padrões da rede neural
Input variables, energy consumption, The Neural Net Pattern Recognition
Variables de entrada, Consumo energético, The Neural Net Pattern Recognition
topic Variáveis de entrada, Consumo de energia, Reconhecimento de padrões da rede neural
Input variables, energy consumption, The Neural Net Pattern Recognition
Variables de entrada, Consumo energético, The Neural Net Pattern Recognition
description Pattern recognition is based on recognizing the unique properties that identify an individual from others of the same species. The methodology was based on knowing the load and energy consumption generated by the Faculty of Mathematics, Physics and Chemistry of the Technical University of Manabí, in the same way the structure of "The Neural Net Pattern Recognition" was used. pattern recognition), which were trained to classify the inputs according to their classes, carried out using the Matlab R2017b software, with which the training of the network was done with different numbers of neurons in the hidden layer, where values ​​of 10,15,20,25 and 30 were used to obtain the lowest error, the following objectives were set: Know the load and the energy consumption that it generates in the FCMFQ, select the variable that will be established as inputs to the network, training of the smart network using the Matlab software and analyzing the results obtained with the training, The comparison between the different trainings of the network with the mentioned values ​​of the neurons was made, choosing to choose 30 neurons, obtaining the lowest error (0). In conclusion, the use of an intelligent electrical network with the implementation of the ANN technique is beneficial, since, if an intelligent electrical network is implemented throughout the UTM campus, it will be possible to obtain more profitable energy efficiency.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408
10.51798/sijis.v3i2.408
url https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408
identifier_str_mv 10.51798/sijis.v3i2.408
dc.language.iso.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408/269
dc.rights.driver.fl_str_mv Copyright (c) 2022 Raúl Andrés García Talledo, Lenin Cuenca Álava
https://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Raúl Andrés García Talledo, Lenin Cuenca Álava
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sapienza Grupo Editorial
publisher.none.fl_str_mv Sapienza Grupo Editorial
dc.source.none.fl_str_mv Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 2 (2022): Multidisciplinary Contributions; 816-825
Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 2 (2022): Aportes Multidisciplinarios; 816-825
Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 2 (2022): Contribuições Multidisciplinares; 816-825
2675-9780
10.51798/sijis.v3i2
reponame:Sapienza (Curitiba)
instname:Sapienza Grupo Editorial
instacron:SAPIENZA
instname_str Sapienza Grupo Editorial
instacron_str SAPIENZA
institution SAPIENZA
reponame_str Sapienza (Curitiba)
collection Sapienza (Curitiba)
repository.name.fl_str_mv Sapienza (Curitiba) - Sapienza Grupo Editorial
repository.mail.fl_str_mv editor@sapienzaeditorial.com
_version_ 1797051608451776512