Analysis of the use of pattern recognition networks in the application of intelligent electrical networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | spa |
Título da fonte: | Sapienza (Curitiba) |
Texto Completo: | https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408 |
Resumo: | Pattern recognition is based on recognizing the unique properties that identify an individual from others of the same species. The methodology was based on knowing the load and energy consumption generated by the Faculty of Mathematics, Physics and Chemistry of the Technical University of Manabí, in the same way the structure of "The Neural Net Pattern Recognition" was used. pattern recognition), which were trained to classify the inputs according to their classes, carried out using the Matlab R2017b software, with which the training of the network was done with different numbers of neurons in the hidden layer, where values of 10,15,20,25 and 30 were used to obtain the lowest error, the following objectives were set: Know the load and the energy consumption that it generates in the FCMFQ, select the variable that will be established as inputs to the network, training of the smart network using the Matlab software and analyzing the results obtained with the training, The comparison between the different trainings of the network with the mentioned values of the neurons was made, choosing to choose 30 neurons, obtaining the lowest error (0). In conclusion, the use of an intelligent electrical network with the implementation of the ANN technique is beneficial, since, if an intelligent electrical network is implemented throughout the UTM campus, it will be possible to obtain more profitable energy efficiency. |
id |
SAPIENZA_4afcf97f19dedd489d84f76a76643ff7 |
---|---|
oai_identifier_str |
oai:ojs2.journals.sapienzaeditorial.com:article/408 |
network_acronym_str |
SAPIENZA |
network_name_str |
Sapienza (Curitiba) |
repository_id_str |
|
spelling |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networksAnálisis del empleo de redes de reconocimiento de patrones en la aplicación de redes eléctricas inteligentesAnálise do uso de redes de reconhecimento de padrões na aplicação de redes elétricas inteligentesVariáveis de entrada, Consumo de energia, Reconhecimento de padrões da rede neuralInput variables, energy consumption, The Neural Net Pattern RecognitionVariables de entrada, Consumo energético, The Neural Net Pattern RecognitionPattern recognition is based on recognizing the unique properties that identify an individual from others of the same species. The methodology was based on knowing the load and energy consumption generated by the Faculty of Mathematics, Physics and Chemistry of the Technical University of Manabí, in the same way the structure of "The Neural Net Pattern Recognition" was used. pattern recognition), which were trained to classify the inputs according to their classes, carried out using the Matlab R2017b software, with which the training of the network was done with different numbers of neurons in the hidden layer, where values of 10,15,20,25 and 30 were used to obtain the lowest error, the following objectives were set: Know the load and the energy consumption that it generates in the FCMFQ, select the variable that will be established as inputs to the network, training of the smart network using the Matlab software and analyzing the results obtained with the training, The comparison between the different trainings of the network with the mentioned values of the neurons was made, choosing to choose 30 neurons, obtaining the lowest error (0). In conclusion, the use of an intelligent electrical network with the implementation of the ANN technique is beneficial, since, if an intelligent electrical network is implemented throughout the UTM campus, it will be possible to obtain more profitable energy efficiency.El reconocimiento de patrones se basa en el reconocer las propiedades únicas que identifican un individuo de los otros de la misma especie. La metodología se basó en conocer la carga y el consumo de energía que genera la facultad de Matemática, Física y Química de la Universidad Técnica de Manabí, de la misma forma se utilizó la estructura de “The Neural Net Pattern Recognition”, los cuales se entrenaron para clasificar las entradas según sus clases, realizado mediante el software Matlab R2017b, con el cual se hizo el entrenamiento de la red con diferentes números de neuronas en la capa oculta, donde se usaron valores de 10,15,20,25 y 30 para lograr obtener el error más bajo, se plantearon los siguientes objetivos: Conocer la carga y el consumo de energía que genera en la FCMFQ, seleccionar la variable que se van a establecer como entradas a la red, entrenamiento de la red inteligente mediante el software Matlab y analizar los resultados obtenidos con el entrenamiento, se realizó la comparación entre los diferentes entrenamientos de la red con los valores mencionados de las neuronas, optando por escoger 30 neuronas, obteniendo el error de más bajo (0). Se concluye que la utilización de una red eléctrica inteligente con la implementación de la técnica de RNA es beneficiosa, ya que, si se implementa una red eléctrica inteligente a lo largo del campus de la UTM, se va a poder obtener una eficiencia energética más rentable.O reconhecimento de padrões baseia-se no reconhecimento das propriedades únicas que identificam um indivíduo de outros da mesma espécie. A metodologia foi baseada em conhecer a carga e o consumo de energia gerados pela Faculdade de Matemática, Física e Química da Universidade Técnica de Manabí, da mesma forma que foi utilizada a estrutura de "Reconhecimento de padrões de rede neural", que foram treinados para classificar as entradas de acordo com suas classes, realizadas utilizando o software Matlab R2017b, com o qual a rede foi treinada com diferentes números de neurônios na camada oculta, onde foram utilizados valores de 10,15,20,25 e 30. Em ordem para obter o menor erro foram estabelecidos os seguintes objetivos: Conhecer a carga e o consumo de energia que ela gera no FCMFQ, selecionar a variável que será estabelecida como entradas para a rede, treinar a rede inteligente através do software Matlab e analisar os resultados obtidos com o treinamento, foi feita a comparação entre os diferentes treinamentos da rede com os valores mencionados dos neurônios, optando por escolher 30 neurônios, obtendo o menor erro (0). Conclui-se que a utilização de uma rede elétrica inteligente com a implementação da técnica RNA é benéfica, pois, se uma rede elétrica inteligente for implementada em todo o campus UTM, será possível obter eficiência energética mais rentável.Sapienza Grupo Editorial2022-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/40810.51798/sijis.v3i2.408Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 2 (2022): Multidisciplinary Contributions; 816-825Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 2 (2022): Aportes Multidisciplinarios; 816-825Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 2 (2022): Contribuições Multidisciplinares; 816-8252675-978010.51798/sijis.v3i2reponame:Sapienza (Curitiba)instname:Sapienza Grupo Editorialinstacron:SAPIENZAspahttps://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408/269Copyright (c) 2022 Raúl Andrés García Talledo, Lenin Cuenca Álavahttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessGarcía Talledo, Raúl Andrés Cuenca Álava, Lenin 2022-12-26T21:19:06Zoai:ojs2.journals.sapienzaeditorial.com:article/408Revistahttps://journals.sapienzaeditorial.com/index.php/SIJISPRIhttps://journals.sapienzaeditorial.com/index.php/SIJIS/oaieditor@sapienzaeditorial.com2675-97802675-9780opendoar:2023-01-12T16:42:59.170468Sapienza (Curitiba) - Sapienza Grupo Editorialfalse |
dc.title.none.fl_str_mv |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networks Análisis del empleo de redes de reconocimiento de patrones en la aplicación de redes eléctricas inteligentes Análise do uso de redes de reconhecimento de padrões na aplicação de redes elétricas inteligentes |
title |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networks |
spellingShingle |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networks García Talledo, Raúl Andrés Variáveis de entrada, Consumo de energia, Reconhecimento de padrões da rede neural Input variables, energy consumption, The Neural Net Pattern Recognition Variables de entrada, Consumo energético, The Neural Net Pattern Recognition |
title_short |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networks |
title_full |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networks |
title_fullStr |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networks |
title_full_unstemmed |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networks |
title_sort |
Analysis of the use of pattern recognition networks in the application of intelligent electrical networks |
author |
García Talledo, Raúl Andrés |
author_facet |
García Talledo, Raúl Andrés Cuenca Álava, Lenin |
author_role |
author |
author2 |
Cuenca Álava, Lenin |
author2_role |
author |
dc.contributor.author.fl_str_mv |
García Talledo, Raúl Andrés Cuenca Álava, Lenin |
dc.subject.por.fl_str_mv |
Variáveis de entrada, Consumo de energia, Reconhecimento de padrões da rede neural Input variables, energy consumption, The Neural Net Pattern Recognition Variables de entrada, Consumo energético, The Neural Net Pattern Recognition |
topic |
Variáveis de entrada, Consumo de energia, Reconhecimento de padrões da rede neural Input variables, energy consumption, The Neural Net Pattern Recognition Variables de entrada, Consumo energético, The Neural Net Pattern Recognition |
description |
Pattern recognition is based on recognizing the unique properties that identify an individual from others of the same species. The methodology was based on knowing the load and energy consumption generated by the Faculty of Mathematics, Physics and Chemistry of the Technical University of Manabí, in the same way the structure of "The Neural Net Pattern Recognition" was used. pattern recognition), which were trained to classify the inputs according to their classes, carried out using the Matlab R2017b software, with which the training of the network was done with different numbers of neurons in the hidden layer, where values of 10,15,20,25 and 30 were used to obtain the lowest error, the following objectives were set: Know the load and the energy consumption that it generates in the FCMFQ, select the variable that will be established as inputs to the network, training of the smart network using the Matlab software and analyzing the results obtained with the training, The comparison between the different trainings of the network with the mentioned values of the neurons was made, choosing to choose 30 neurons, obtaining the lowest error (0). In conclusion, the use of an intelligent electrical network with the implementation of the ANN technique is beneficial, since, if an intelligent electrical network is implemented throughout the UTM campus, it will be possible to obtain more profitable energy efficiency. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408 10.51798/sijis.v3i2.408 |
url |
https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408 |
identifier_str_mv |
10.51798/sijis.v3i2.408 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/408/269 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Raúl Andrés García Talledo, Lenin Cuenca Álava https://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Raúl Andrés García Talledo, Lenin Cuenca Álava https://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sapienza Grupo Editorial |
publisher.none.fl_str_mv |
Sapienza Grupo Editorial |
dc.source.none.fl_str_mv |
Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 2 (2022): Multidisciplinary Contributions; 816-825 Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 2 (2022): Aportes Multidisciplinarios; 816-825 Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 2 (2022): Contribuições Multidisciplinares; 816-825 2675-9780 10.51798/sijis.v3i2 reponame:Sapienza (Curitiba) instname:Sapienza Grupo Editorial instacron:SAPIENZA |
instname_str |
Sapienza Grupo Editorial |
instacron_str |
SAPIENZA |
institution |
SAPIENZA |
reponame_str |
Sapienza (Curitiba) |
collection |
Sapienza (Curitiba) |
repository.name.fl_str_mv |
Sapienza (Curitiba) - Sapienza Grupo Editorial |
repository.mail.fl_str_mv |
editor@sapienzaeditorial.com |
_version_ |
1797051608451776512 |