Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization

Detalhes bibliográficos
Autor(a) principal: Fernandes, S. E.N.
Data de Publicação: 2016
Outros Autores: Setoue, K. K.F. [UNESP], Adeli, H., Papa, J. P. [UNESP]
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/B978-0-12-804536-7.00002-8
http://hdl.handle.net/11449/220833
Resumo: Many approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets.
id UNSP_39a2d1b48c4382daa29a51adccff40f6
oai_identifier_str oai:repositorio.unesp.br:11449/220833
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimizationEnhanced probabilistic neural networksMetaheuristicNeural networksOptimizationPattern recognitionMany approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets.Department of Computing Federal University of São CarlosDepartment of Computing São Paulo State UniversityDepartment of Civil Environmental and Geodetic Engineering Ohio State UniversityDepartment of Computing São Paulo State UniversityUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)Ohio State UniversityFernandes, S. E.N.Setoue, K. K.F. [UNESP]Adeli, H.Papa, J. P. [UNESP]2022-04-28T19:06:03Z2022-04-28T19:06:03Z2016-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart25-45http://dx.doi.org/10.1016/B978-0-12-804536-7.00002-8Bio-Inspired Computation and Applications in Image Processing, p. 25-45.http://hdl.handle.net/11449/22083310.1016/B978-0-12-804536-7.00002-82-s2.0-85017446492Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBio-Inspired Computation and Applications in Image Processinginfo:eu-repo/semantics/openAccess2022-04-28T19:06:03Zoai:repositorio.unesp.br:11449/220833Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:02:01.542552Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
title Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
spellingShingle Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
Fernandes, S. E.N.
Enhanced probabilistic neural networks
Metaheuristic
Neural networks
Optimization
Pattern recognition
title_short Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
title_full Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
title_fullStr Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
title_full_unstemmed Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
title_sort Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
author Fernandes, S. E.N.
author_facet Fernandes, S. E.N.
Setoue, K. K.F. [UNESP]
Adeli, H.
Papa, J. P. [UNESP]
author_role author
author2 Setoue, K. K.F. [UNESP]
Adeli, H.
Papa, J. P. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (UNESP)
Ohio State University
dc.contributor.author.fl_str_mv Fernandes, S. E.N.
Setoue, K. K.F. [UNESP]
Adeli, H.
Papa, J. P. [UNESP]
dc.subject.por.fl_str_mv Enhanced probabilistic neural networks
Metaheuristic
Neural networks
Optimization
Pattern recognition
topic Enhanced probabilistic neural networks
Metaheuristic
Neural networks
Optimization
Pattern recognition
description Many approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-11
2022-04-28T19:06:03Z
2022-04-28T19:06:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/B978-0-12-804536-7.00002-8
Bio-Inspired Computation and Applications in Image Processing, p. 25-45.
http://hdl.handle.net/11449/220833
10.1016/B978-0-12-804536-7.00002-8
2-s2.0-85017446492
url http://dx.doi.org/10.1016/B978-0-12-804536-7.00002-8
http://hdl.handle.net/11449/220833
identifier_str_mv Bio-Inspired Computation and Applications in Image Processing, p. 25-45.
10.1016/B978-0-12-804536-7.00002-8
2-s2.0-85017446492
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Bio-Inspired Computation and Applications in Image Processing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 25-45
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129152589496320