Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/B978-0-12-804536-7.00002-8 http://hdl.handle.net/11449/220833 |
Resumo: | Many approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets. |
id |
UNSP_39a2d1b48c4382daa29a51adccff40f6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/220833 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimizationEnhanced probabilistic neural networksMetaheuristicNeural networksOptimizationPattern recognitionMany approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets.Department of Computing Federal University of São CarlosDepartment of Computing São Paulo State UniversityDepartment of Civil Environmental and Geodetic Engineering Ohio State UniversityDepartment of Computing São Paulo State UniversityUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)Ohio State UniversityFernandes, S. E.N.Setoue, K. K.F. [UNESP]Adeli, H.Papa, J. P. [UNESP]2022-04-28T19:06:03Z2022-04-28T19:06:03Z2016-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart25-45http://dx.doi.org/10.1016/B978-0-12-804536-7.00002-8Bio-Inspired Computation and Applications in Image Processing, p. 25-45.http://hdl.handle.net/11449/22083310.1016/B978-0-12-804536-7.00002-82-s2.0-85017446492Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBio-Inspired Computation and Applications in Image Processinginfo:eu-repo/semantics/openAccess2022-04-28T19:06:03Zoai:repositorio.unesp.br:11449/220833Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:02:01.542552Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization |
title |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization |
spellingShingle |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization Fernandes, S. E.N. Enhanced probabilistic neural networks Metaheuristic Neural networks Optimization Pattern recognition |
title_short |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization |
title_full |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization |
title_fullStr |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization |
title_full_unstemmed |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization |
title_sort |
Fine-tuning enhanced probabilistic neural networks using metaheuristic-driven optimization |
author |
Fernandes, S. E.N. |
author_facet |
Fernandes, S. E.N. Setoue, K. K.F. [UNESP] Adeli, H. Papa, J. P. [UNESP] |
author_role |
author |
author2 |
Setoue, K. K.F. [UNESP] Adeli, H. Papa, J. P. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (UNESP) Ohio State University |
dc.contributor.author.fl_str_mv |
Fernandes, S. E.N. Setoue, K. K.F. [UNESP] Adeli, H. Papa, J. P. [UNESP] |
dc.subject.por.fl_str_mv |
Enhanced probabilistic neural networks Metaheuristic Neural networks Optimization Pattern recognition |
topic |
Enhanced probabilistic neural networks Metaheuristic Neural networks Optimization Pattern recognition |
description |
Many approaches using neural networks have been studied in the past years. A number of architectures for different objectives are presented in the literature, including probabilistic neural networks (PNNs), which have shown good results in several applications. A simple and elegant solution related to PNNs is the enhanced probabilistic neural networks (EPNNs), whose idea is to consider only the samples that fall in a neighborhood of given a training sample to estimate its probability density function. In this work, we propose to fine-tune EPNN parameters by means of metaheuristic-driven optimization techniques, from the results evaluated in a number of public datasets. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-11 2022-04-28T19:06:03Z 2022-04-28T19:06:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/B978-0-12-804536-7.00002-8 Bio-Inspired Computation and Applications in Image Processing, p. 25-45. http://hdl.handle.net/11449/220833 10.1016/B978-0-12-804536-7.00002-8 2-s2.0-85017446492 |
url |
http://dx.doi.org/10.1016/B978-0-12-804536-7.00002-8 http://hdl.handle.net/11449/220833 |
identifier_str_mv |
Bio-Inspired Computation and Applications in Image Processing, p. 25-45. 10.1016/B978-0-12-804536-7.00002-8 2-s2.0-85017446492 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bio-Inspired Computation and Applications in Image Processing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
25-45 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129152589496320 |