Insulin as a model to teach three-dimensional structure of proteins

Detalhes bibliográficos
Autor(a) principal: Teixeira da Rocha, João Batista
Data de Publicação: 2018
Outros Autores: Oliveira, Cláudia Sirlene, Nogara, Pablo Andrei, Schmitz, Gabriela Luisa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista de Ensino de Bioquímica
Texto Completo: http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/741
Resumo: Proteins are the most ubiquitous macromolecules found in the living cells and have innumerous physiological functions. Therefore, it is fundamental to build a solid knowledge about the proteins three dimensional structure to better understand the living state. The hierarchical structure of proteins is usually studied in the undergraduate discipline of Biochemistry.  Here we described pedagogical interventions designed to increase the preservice teacher chemistry students’ knowledge about protein structure.  The activities were made using alternative and cheap materials to encourage the application of these simple methodologies by the future teachers in the secondary school.  From the primary structure of insulin chains, students had to construct a three-dimensional structure of insulin. After the activities, the students highlighted an improvement of their previous knowledge about proteins structure. The construction of a tridimensional model together with other activities seems to be an efficient way to promote the learning about the structure of proteins to undergraduate students. The methodology used was inexpensiveness and simple and it can be used both in the university and in the high-school.Proteins are the most ubiquitous macromolecules found in the living cells and have innumerous physiological functions. Therefore, it is fundamental to build a solid knowledge about the proteins three dimensional structure to better understand the living state. The hierarchical structure of proteins is usually studied in the undergraduate discipline of Biochemistry. Here we described pedagogical interventions designed to increase the preservice teacher chemistry students’ knowledge about protein structure. The activities were made using alternative and cheap materials to encourage the application of these simple methodologies by the future teachers in the secondary school. From the primary structure of insulin chains, students had to construct a three-dimensional structure of insulin. After the activities, the students highlighted an improvement of their previous knowledge about proteins structure. The construction of a tridimensional model together with other activities seems to be an efficient way to promote the learning about the structure of proteins to undergraduate students. The methodology used was inexpensiveness and simple and it can be used both in the university and in the high-school.
id SBBQM-1_4514d48b807d015d7919ce212193a87a
oai_identifier_str oai:ojs.bioquimica.org.br:article/741
network_acronym_str SBBQM-1
network_name_str Revista de Ensino de Bioquímica
repository_id_str
spelling Insulin as a model to teach three-dimensional structure of proteinsO hormônio insulina como um modelo para ensinar a estrutura tridimensional das proteínas3D models; Proteinbiochemistry education; undergraduate students; protein modelsEducação em bioquímica; estudantes de graduação; modelos de proteínas.Proteins are the most ubiquitous macromolecules found in the living cells and have innumerous physiological functions. Therefore, it is fundamental to build a solid knowledge about the proteins three dimensional structure to better understand the living state. The hierarchical structure of proteins is usually studied in the undergraduate discipline of Biochemistry.  Here we described pedagogical interventions designed to increase the preservice teacher chemistry students’ knowledge about protein structure.  The activities were made using alternative and cheap materials to encourage the application of these simple methodologies by the future teachers in the secondary school.  From the primary structure of insulin chains, students had to construct a three-dimensional structure of insulin. After the activities, the students highlighted an improvement of their previous knowledge about proteins structure. The construction of a tridimensional model together with other activities seems to be an efficient way to promote the learning about the structure of proteins to undergraduate students. The methodology used was inexpensiveness and simple and it can be used both in the university and in the high-school.Proteins are the most ubiquitous macromolecules found in the living cells and have innumerous physiological functions. Therefore, it is fundamental to build a solid knowledge about the proteins three dimensional structure to better understand the living state. The hierarchical structure of proteins is usually studied in the undergraduate discipline of Biochemistry. Here we described pedagogical interventions designed to increase the preservice teacher chemistry students’ knowledge about protein structure. The activities were made using alternative and cheap materials to encourage the application of these simple methodologies by the future teachers in the secondary school. From the primary structure of insulin chains, students had to construct a three-dimensional structure of insulin. After the activities, the students highlighted an improvement of their previous knowledge about proteins structure. The construction of a tridimensional model together with other activities seems to be an efficient way to promote the learning about the structure of proteins to undergraduate students. The methodology used was inexpensiveness and simple and it can be used both in the university and in the high-school.As proteínas são macromoléculas amplamente encontradas nas células e possuem inúmeras funções fisiológicas. Consequentemente, é de fundamental construir um conhecimento sólido sobre estrutura tridimensional das proteínas. As estruturas proteicas são geralmente estudadas durante a graduação na disciplina de Bioquímica. Neste trabalho descrevemos intervenções pedagógicas planejadas para aumentar o conhecimento de estudantes de Química licenciatura sobre a estrutura de proteínas. As atividades foram realizadas utilizando materiais baratos para encorajar a sua implementação no ensino médio pelos futuros professores. A partir da estrutura primária da insulina, os estudantes construíram a estrutura tridimensional desta proteína. Após as atividades, os estudantes destacaram uma melhora nos seus conhecimentos prévios sobre a estrutura das proteínas. A construção de um modelo tridimensional juntamente com outras atividades parece ser uma maneira eficiente de promover o aprendizado sobre a estrutura de proteínas aos estudantes de graduação. A metodologia utilizada foi simples e de baixo custo e pode ser utilizada tanto no nível universitário como no nível do ensino médio.Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBqCAPESCNPq.Capes, CNPqTeixeira da Rocha, João BatistaOliveira, Cláudia SirleneNogara, Pablo AndreiSchmitz, Gabriela Luisa2018-02-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://bioquimica.org.br/revista/ojs/index.php/REB/article/view/74110.16923/reb.v15i2.741Revista de Ensino de Bioquímica; v. 15, n. 2 (2017): REB (Jul-Dez); 114-130Revista de Enseñanza de Bioquímica; v. 15, n. 2 (2017): REB (Jul-Dez); 114-130Journal of Biochemistry Education; v. 15, n. 2 (2017): REB (Jul-Dez); 114-130Revista de Ensino de Bioquímica; v. 15, n. 2 (2017): REB (Jul-Dez); 114-1302318-8790reponame:Revista de Ensino de Bioquímicainstname:Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)instacron:SBBQMenghttp://bioquimica.org.br/revista/ojs/index.php/REB/article/view/741/610/*ref*/Vella F. Unity and diversity in biochemical education. Biochemical Education. 1984; 12:120-123./*ref*/Albuquerque MAC, Amorim AHC, Rocha JRCF, Silveira LMG, Neri DFM. Bioquímica como sinônimo de ensino, pesquisa e extensão: um relato de experiência. Revista Brasileira de Educação Médica. 2012; 36:137-142./*ref*/Lehninger AL. Bioquímica; v.1 Componentes moleculares das células. Editora Edgard Blücher Ltda, 1976./*ref*/Pauling L, Corey RB. Configuration of polypeptide chains. Nature. 1951; 168:550-551./*ref*/Pauling L, Corey RB, Branson HR. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences. 1951; 37:205-211./*ref*/Sá LP, Garritz A. O conhecimento pedagógico da “natureza da matéria” de bolsistas brasileiros participantes de um programa de iniciação à docência. Educación Química. 2014; 25:363-379./*ref*/Spadaro ACC. Teaching biochemistry for undergraduate students in dentistry. Biochemical Education. 1993; 21(3)./*ref*/Hageman JH. Use of molecular models for active learning in biochemistry lecture courses. Journal of Chemical Education. 2010; 87:291–293./*ref*/Rostejnská M, Klímová H. Biochemistry Games: AZ-Quiz and Jeopardy! Journal of Chemical Education. 2011; 88(4)./*ref*/Frey CA, Mikasen ML, Griep MA. Put some movie wow! in your chemistry teaching, Journal of Chemical Education. 2012; 89:1138−1143./*ref*/Oliveira NM, Dias WD. O uso do vídeo como ferramenta de ensino aplicada em biologia celular. Enciclopédia Biosfera. 2012; 8(14)./*ref*/Surapaneni KM, Tekian A. Concept mapping enhances learning of biochemistry. Medical Education Online. 2013; 18. DOI: 10.3402/meo.v18i0.20157./*ref*/Figueira ACM; Rocha JBT. Concepções sobre proteínas, açúcares e gorduras: uma investigação com estudantes de ensino básico e superior. Revista Ciências & Idéias. 2015; 7:1-22./*ref*/Ghosh J, Pradhan R, Vagah S. Concept map as a reinforcement method of teaching biochemistry. Indian Journal of Basic and Applied Medical Research. 2016; 5:659-666./*ref*/Silveira JT, Rocha JBT. Produção científica sobre estratégias didáticas utilizadas no ensino de Bioquímica: uma revisão sistemática. Revista de Ensino de Bioquímica. 2016; 14(1)./*ref*/Luz RM, Adamatti DF, Werhli AV. Modelo de dobramento de proteína em jogo computacional. Revista Brasileira de Computação Aplicada. 2017;9: 42-51./*ref*/Herráez A. Biomolecules in the Computer: Jmol to the Rescue. Biochemistry and Molecular Biology Education. 2006; 34: 255–261./*ref*/DeLano WL. The PyMOL molecular graphics system. 2002.http://www.pymol.org/*ref*/Sayle R, Milner-White, EJ. RasMol: Biomolecular graphics for all, Trends in Biochemical Sciences. 1995; 20: 374-376./*ref*/Richardson DC, Richardson, JS. The kinemage: a tool for scientific communication. Protein Science. 1992: 1; 3–9./*ref*/Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics. 2012; 4: 1-17./*ref*/Dassault Systèmes BIOVIA, Discovery Studio 3.5, San Diego: Dassault Systèmes, 2017. http://accelrys.com//*ref*/Herman T, Morris J, Colton S, Batiza A, Patrick M, Franzen M et al. Tactile Teaching exploring protein structure/function using physical models. Biochemistry and Molecular Biology Education. 2006; 34:247-254./*ref*/Sabino G, Amaral FC, Sabino CVS, Kattah LR. Proposta de uma metodologia para o ensino da estrutura e função das proteínas na disciplina de Bioquímica. Revista Brasileira de Ensino de Bioquímica e Biologia Molecular. 2009; (1), artigo E./*ref*/Barak M, Hussein-Farraj R. Integrating model-based learning and animations for enhancing student´s understanding of proteins structure and function. Research in Science Education. 2013;43:619-636./*ref*/Cooper AK, Oliver-Hoyo MT. Creating 3D physical models to probe students understanding of macromolecular structure. Biochemistry and Molecular Biology Education. 2017. DOI: 10.1002/bmb.21076./*ref*/Roberts JR, Hagedorn E, Dillenburg P, Patrick M, Herman T. Physical models enhance modecular three-dimensional literacy in an introductory biochemistry course. Biochemistry and Molecular Biology Education. 2005; 33: 105-110./*ref*/Bain GA, Yi J, Beikmohamadi M. Using Physical Models of Biomolecular Structures to Teach Concepst of Biochemical Structure and Structure Depiction in the Introductoru Chemistry Laboratory. Journal of Chemical Education. 2006; 83: 1322-1324./*ref*/Brownlee C. The Protein Papers. Proceedings of the National Academy of Sciences of the United States of America. Acessed in December, 22, 2017. Available in: http://www.pnas.org/site/classics/classics1.xhtml/*ref*/Wilcox G. Insulin and Insulin resistance. The Clinical Biochemist Reviews. 2005;26:19-39./*ref*/Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puiqserver P. Insulin regulation of gluconeogenesis. Annals of the New York Academy of Sciences. 2017. DOI: 10.1111/nyas.13435./*ref*/Sanger F. Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes. Science. 1959; 129:1340-1344./*ref*/Owerbach D, Bell GI, Rutter WJ, Shows TB. The insulin gene is located on chromosome 11 in humans. Nature. 1980; 286:74-82./*ref*/Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Research. 2000; 28: 235-242./*ref*/Hua QX, Gozani SN, Chance RE, Hoffmann JA, Frank BH, Weiss MA. Structure of a protein in a kinetic trap. Nature Structural Biology. 1995; 2:129-138./*ref*/Champe PC, Harvey RA, Ferrier DR, Bioquímica Ilustrada. 3ed. Artmed, 2006./*ref*/Campbell MK, Farrel SO. Bioquímcia. 8ed. Cengage Learning, 2016./*ref*/Devlin TM. Manual de bioquímica com correlações clínicas. 7ed. Editora Edgard Blücher Ltda, 2011./*ref*/Voet D, Voet JG, Pratt CW. Fundamentos de bioquímica: a vida em nível molecular. 2ed. Artmed, 2008./*ref*/Rocha JBT, Piccoli BC, Oliveira CS. Biological and chemical interest in selenium: a brief historical account. Arkivoc. 2017;ii:457-491./*ref*/Jittivadhna K, Ruenwongsa P, Panijpan B. Making ordered DNA and protein structures from computer-printed transparency film cut-outs, Biochemistry and Molecular Biology Education. 2009;37:220–226./*ref*/Campbell ID. The march of structural biology - Nature Reviews Molecular Cell Biology. 2002; 3: 377-381./*ref*/Oliveira Jr, M. M. Flasches das disciplinas de formação inicial no repertório profissional de licenciandos em química. Dissertação (Mestrado). Universidade de São Paulo, São Paulo, 2011./*ref*/Júnior AFN, Souza DCA. Confecção e apresentação de material didático-pedagógico na formação de professores de Biologia: O que diz a produção escrita? In: Encontro Nacional de Pesquisa em Educação em Ciências, Florianópolis, Santa Catarina. Anais. Florianópolis: UFSC, 2009. p. 1-12.Santa Maria, Rio Grande do Sul, BrasilSanta Maria, SC, BrasilDireitos autorais 2018 Revista de Ensino de Bioquímicahttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2022-03-25T17:24:30Zoai:ojs.bioquimica.org.br:article/741Revistahttp://bioquimica.org.br/revista/ojs/index.php/REBONGhttp://bioquimica.org.br/revista/ojs/index.php/REB/oaicontato@bioquimica.org.br||ensinodebioquimica@gmail.com2318-87901677-2318opendoar:2022-03-25T17:24:30Revista de Ensino de Bioquímica - Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)false
dc.title.none.fl_str_mv Insulin as a model to teach three-dimensional structure of proteins
O hormônio insulina como um modelo para ensinar a estrutura tridimensional das proteínas
title Insulin as a model to teach three-dimensional structure of proteins
spellingShingle Insulin as a model to teach three-dimensional structure of proteins
Teixeira da Rocha, João Batista
3D models; Protein
biochemistry education; undergraduate students; protein models
Educação em bioquímica; estudantes de graduação; modelos de proteínas.
title_short Insulin as a model to teach three-dimensional structure of proteins
title_full Insulin as a model to teach three-dimensional structure of proteins
title_fullStr Insulin as a model to teach three-dimensional structure of proteins
title_full_unstemmed Insulin as a model to teach three-dimensional structure of proteins
title_sort Insulin as a model to teach three-dimensional structure of proteins
author Teixeira da Rocha, João Batista
author_facet Teixeira da Rocha, João Batista
Oliveira, Cláudia Sirlene
Nogara, Pablo Andrei
Schmitz, Gabriela Luisa
author_role author
author2 Oliveira, Cláudia Sirlene
Nogara, Pablo Andrei
Schmitz, Gabriela Luisa
author2_role author
author
author
dc.contributor.none.fl_str_mv CAPES
CNPq.
Capes, CNPq
dc.contributor.author.fl_str_mv Teixeira da Rocha, João Batista
Oliveira, Cláudia Sirlene
Nogara, Pablo Andrei
Schmitz, Gabriela Luisa
dc.subject.none.fl_str_mv
dc.subject.por.fl_str_mv 3D models; Protein
biochemistry education; undergraduate students; protein models
Educação em bioquímica; estudantes de graduação; modelos de proteínas.
topic 3D models; Protein
biochemistry education; undergraduate students; protein models
Educação em bioquímica; estudantes de graduação; modelos de proteínas.
description Proteins are the most ubiquitous macromolecules found in the living cells and have innumerous physiological functions. Therefore, it is fundamental to build a solid knowledge about the proteins three dimensional structure to better understand the living state. The hierarchical structure of proteins is usually studied in the undergraduate discipline of Biochemistry.  Here we described pedagogical interventions designed to increase the preservice teacher chemistry students’ knowledge about protein structure.  The activities were made using alternative and cheap materials to encourage the application of these simple methodologies by the future teachers in the secondary school.  From the primary structure of insulin chains, students had to construct a three-dimensional structure of insulin. After the activities, the students highlighted an improvement of their previous knowledge about proteins structure. The construction of a tridimensional model together with other activities seems to be an efficient way to promote the learning about the structure of proteins to undergraduate students. The methodology used was inexpensiveness and simple and it can be used both in the university and in the high-school.Proteins are the most ubiquitous macromolecules found in the living cells and have innumerous physiological functions. Therefore, it is fundamental to build a solid knowledge about the proteins three dimensional structure to better understand the living state. The hierarchical structure of proteins is usually studied in the undergraduate discipline of Biochemistry. Here we described pedagogical interventions designed to increase the preservice teacher chemistry students’ knowledge about protein structure. The activities were made using alternative and cheap materials to encourage the application of these simple methodologies by the future teachers in the secondary school. From the primary structure of insulin chains, students had to construct a three-dimensional structure of insulin. After the activities, the students highlighted an improvement of their previous knowledge about proteins structure. The construction of a tridimensional model together with other activities seems to be an efficient way to promote the learning about the structure of proteins to undergraduate students. The methodology used was inexpensiveness and simple and it can be used both in the university and in the high-school.
publishDate 2018
dc.date.none.fl_str_mv 2018-02-05
dc.type.none.fl_str_mv





dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/741
10.16923/reb.v15i2.741
url http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/741
identifier_str_mv 10.16923/reb.v15i2.741
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/741/610
/*ref*/Vella F. Unity and diversity in biochemical education. Biochemical Education. 1984; 12:120-123.
/*ref*/Albuquerque MAC, Amorim AHC, Rocha JRCF, Silveira LMG, Neri DFM. Bioquímica como sinônimo de ensino, pesquisa e extensão: um relato de experiência. Revista Brasileira de Educação Médica. 2012; 36:137-142.
/*ref*/Lehninger AL. Bioquímica; v.1 Componentes moleculares das células. Editora Edgard Blücher Ltda, 1976.
/*ref*/Pauling L, Corey RB. Configuration of polypeptide chains. Nature. 1951; 168:550-551.
/*ref*/Pauling L, Corey RB, Branson HR. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences. 1951; 37:205-211.
/*ref*/Sá LP, Garritz A. O conhecimento pedagógico da “natureza da matéria” de bolsistas brasileiros participantes de um programa de iniciação à docência. Educación Química. 2014; 25:363-379.
/*ref*/Spadaro ACC. Teaching biochemistry for undergraduate students in dentistry. Biochemical Education. 1993; 21(3).
/*ref*/Hageman JH. Use of molecular models for active learning in biochemistry lecture courses. Journal of Chemical Education. 2010; 87:291–293.
/*ref*/Rostejnská M, Klímová H. Biochemistry Games: AZ-Quiz and Jeopardy! Journal of Chemical Education. 2011; 88(4).
/*ref*/Frey CA, Mikasen ML, Griep MA. Put some movie wow! in your chemistry teaching, Journal of Chemical Education. 2012; 89:1138−1143.
/*ref*/Oliveira NM, Dias WD. O uso do vídeo como ferramenta de ensino aplicada em biologia celular. Enciclopédia Biosfera. 2012; 8(14).
/*ref*/Surapaneni KM, Tekian A. Concept mapping enhances learning of biochemistry. Medical Education Online. 2013; 18. DOI: 10.3402/meo.v18i0.20157.
/*ref*/Figueira ACM; Rocha JBT. Concepções sobre proteínas, açúcares e gorduras: uma investigação com estudantes de ensino básico e superior. Revista Ciências & Idéias. 2015; 7:1-22.
/*ref*/Ghosh J, Pradhan R, Vagah S. Concept map as a reinforcement method of teaching biochemistry. Indian Journal of Basic and Applied Medical Research. 2016; 5:659-666.
/*ref*/Silveira JT, Rocha JBT. Produção científica sobre estratégias didáticas utilizadas no ensino de Bioquímica: uma revisão sistemática. Revista de Ensino de Bioquímica. 2016; 14(1).
/*ref*/Luz RM, Adamatti DF, Werhli AV. Modelo de dobramento de proteína em jogo computacional. Revista Brasileira de Computação Aplicada. 2017;9: 42-51.
/*ref*/Herráez A. Biomolecules in the Computer: Jmol to the Rescue. Biochemistry and Molecular Biology Education. 2006; 34: 255–261.
/*ref*/DeLano WL. The PyMOL molecular graphics system. 2002.http://www.pymol.org
/*ref*/Sayle R, Milner-White, EJ. RasMol: Biomolecular graphics for all, Trends in Biochemical Sciences. 1995; 20: 374-376.
/*ref*/Richardson DC, Richardson, JS. The kinemage: a tool for scientific communication. Protein Science. 1992: 1; 3–9.
/*ref*/Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics. 2012; 4: 1-17.
/*ref*/Dassault Systèmes BIOVIA, Discovery Studio 3.5, San Diego: Dassault Systèmes, 2017. http://accelrys.com/
/*ref*/Herman T, Morris J, Colton S, Batiza A, Patrick M, Franzen M et al. Tactile Teaching exploring protein structure/function using physical models. Biochemistry and Molecular Biology Education. 2006; 34:247-254.
/*ref*/Sabino G, Amaral FC, Sabino CVS, Kattah LR. Proposta de uma metodologia para o ensino da estrutura e função das proteínas na disciplina de Bioquímica. Revista Brasileira de Ensino de Bioquímica e Biologia Molecular. 2009; (1), artigo E.
/*ref*/Barak M, Hussein-Farraj R. Integrating model-based learning and animations for enhancing student´s understanding of proteins structure and function. Research in Science Education. 2013;43:619-636.
/*ref*/Cooper AK, Oliver-Hoyo MT. Creating 3D physical models to probe students understanding of macromolecular structure. Biochemistry and Molecular Biology Education. 2017. DOI: 10.1002/bmb.21076.
/*ref*/Roberts JR, Hagedorn E, Dillenburg P, Patrick M, Herman T. Physical models enhance modecular three-dimensional literacy in an introductory biochemistry course. Biochemistry and Molecular Biology Education. 2005; 33: 105-110.
/*ref*/Bain GA, Yi J, Beikmohamadi M. Using Physical Models of Biomolecular Structures to Teach Concepst of Biochemical Structure and Structure Depiction in the Introductoru Chemistry Laboratory. Journal of Chemical Education. 2006; 83: 1322-1324.
/*ref*/Brownlee C. The Protein Papers. Proceedings of the National Academy of Sciences of the United States of America. Acessed in December, 22, 2017. Available in: http://www.pnas.org/site/classics/classics1.xhtml
/*ref*/Wilcox G. Insulin and Insulin resistance. The Clinical Biochemist Reviews. 2005;26:19-39.
/*ref*/Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puiqserver P. Insulin regulation of gluconeogenesis. Annals of the New York Academy of Sciences. 2017. DOI: 10.1111/nyas.13435.
/*ref*/Sanger F. Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes. Science. 1959; 129:1340-1344.
/*ref*/Owerbach D, Bell GI, Rutter WJ, Shows TB. The insulin gene is located on chromosome 11 in humans. Nature. 1980; 286:74-82.
/*ref*/Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Research. 2000; 28: 235-242.
/*ref*/Hua QX, Gozani SN, Chance RE, Hoffmann JA, Frank BH, Weiss MA. Structure of a protein in a kinetic trap. Nature Structural Biology. 1995; 2:129-138.
/*ref*/Champe PC, Harvey RA, Ferrier DR, Bioquímica Ilustrada. 3ed. Artmed, 2006.
/*ref*/Campbell MK, Farrel SO. Bioquímcia. 8ed. Cengage Learning, 2016.
/*ref*/Devlin TM. Manual de bioquímica com correlações clínicas. 7ed. Editora Edgard Blücher Ltda, 2011.
/*ref*/Voet D, Voet JG, Pratt CW. Fundamentos de bioquímica: a vida em nível molecular. 2ed. Artmed, 2008.
/*ref*/Rocha JBT, Piccoli BC, Oliveira CS. Biological and chemical interest in selenium: a brief historical account. Arkivoc. 2017;ii:457-491.
/*ref*/Jittivadhna K, Ruenwongsa P, Panijpan B. Making ordered DNA and protein structures from computer-printed transparency film cut-outs, Biochemistry and Molecular Biology Education. 2009;37:220–226.
/*ref*/Campbell ID. The march of structural biology - Nature Reviews Molecular Cell Biology. 2002; 3: 377-381.
/*ref*/Oliveira Jr, M. M. Flasches das disciplinas de formação inicial no repertório profissional de licenciandos em química. Dissertação (Mestrado). Universidade de São Paulo, São Paulo, 2011.
/*ref*/Júnior AFN, Souza DCA. Confecção e apresentação de material didático-pedagógico na formação de professores de Biologia: O que diz a produção escrita? In: Encontro Nacional de Pesquisa em Educação em Ciências, Florianópolis, Santa Catarina. Anais. Florianópolis: UFSC, 2009. p. 1-12.
dc.rights.driver.fl_str_mv Direitos autorais 2018 Revista de Ensino de Bioquímica
http://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2018 Revista de Ensino de Bioquímica
http://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Santa Maria, Rio Grande do Sul, Brasil


Santa Maria, SC, Brasil


dc.publisher.none.fl_str_mv Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq
publisher.none.fl_str_mv Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq
dc.source.none.fl_str_mv Revista de Ensino de Bioquímica; v. 15, n. 2 (2017): REB (Jul-Dez); 114-130
Revista de Enseñanza de Bioquímica; v. 15, n. 2 (2017): REB (Jul-Dez); 114-130
Journal of Biochemistry Education; v. 15, n. 2 (2017): REB (Jul-Dez); 114-130
Revista de Ensino de Bioquímica; v. 15, n. 2 (2017): REB (Jul-Dez); 114-130
2318-8790
reponame:Revista de Ensino de Bioquímica
instname:Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
instacron:SBBQM
instname_str Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
instacron_str SBBQM
institution SBBQM
reponame_str Revista de Ensino de Bioquímica
collection Revista de Ensino de Bioquímica
repository.name.fl_str_mv Revista de Ensino de Bioquímica - Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
repository.mail.fl_str_mv contato@bioquimica.org.br||ensinodebioquimica@gmail.com
_version_ 1752126676224966656