Modeling water movement in horizontal columns using fractal theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ciência do Solo (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832010000400042 |
Resumo: | Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns. |
id |
SBCS-1_650ec66e11fe4d0708edbbdb899d7302 |
---|---|
oai_identifier_str |
oai:scielo:S0100-06832010000400042 |
network_acronym_str |
SBCS-1 |
network_name_str |
Revista Brasileira de Ciência do Solo (Online) |
repository_id_str |
|
spelling |
Modeling water movement in horizontal columns using fractal theorynumerical modelingHydrus 2Dfractal modelCantor barsorptivitysoil physicsFractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.Sociedade Brasileira de Ciência do Solo2010-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832010000400042Revista Brasileira de Ciência do Solo v.34 n.4 2010reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/S0100-06832010000400042info:eu-repo/semantics/openAccessLeão,Tairone PaivaPerfect,Edmundeng2010-10-13T00:00:00Zoai:scielo:S0100-06832010000400042Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2010-10-13T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false |
dc.title.none.fl_str_mv |
Modeling water movement in horizontal columns using fractal theory |
title |
Modeling water movement in horizontal columns using fractal theory |
spellingShingle |
Modeling water movement in horizontal columns using fractal theory Leão,Tairone Paiva numerical modeling Hydrus 2D fractal model Cantor bar sorptivity soil physics |
title_short |
Modeling water movement in horizontal columns using fractal theory |
title_full |
Modeling water movement in horizontal columns using fractal theory |
title_fullStr |
Modeling water movement in horizontal columns using fractal theory |
title_full_unstemmed |
Modeling water movement in horizontal columns using fractal theory |
title_sort |
Modeling water movement in horizontal columns using fractal theory |
author |
Leão,Tairone Paiva |
author_facet |
Leão,Tairone Paiva Perfect,Edmund |
author_role |
author |
author2 |
Perfect,Edmund |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Leão,Tairone Paiva Perfect,Edmund |
dc.subject.por.fl_str_mv |
numerical modeling Hydrus 2D fractal model Cantor bar sorptivity soil physics |
topic |
numerical modeling Hydrus 2D fractal model Cantor bar sorptivity soil physics |
description |
Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832010000400042 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832010000400042 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-06832010000400042 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
Revista Brasileira de Ciência do Solo v.34 n.4 2010 reponame:Revista Brasileira de Ciência do Solo (Online) instname:Sociedade Brasileira de Ciência do Solo (SBCS) instacron:SBCS |
instname_str |
Sociedade Brasileira de Ciência do Solo (SBCS) |
instacron_str |
SBCS |
institution |
SBCS |
reponame_str |
Revista Brasileira de Ciência do Solo (Online) |
collection |
Revista Brasileira de Ciência do Solo (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS) |
repository.mail.fl_str_mv |
||sbcs@ufv.br |
_version_ |
1752126516268892160 |