Taxonomic indexes for differentiating malignancy of lung nodules on CT images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research on Biomedical Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300263 |
Resumo: | Abstract Introduction Lung cancer remains the leading cause of cancer mortality worldwide, with one of the lowest survival rates after diagnosis. Therefore, early detection greatly increases the chances of improving patient survival. Methods This study proposes a method for diagnosis of lung nodules in benign and malignant tumors based on image processing and pattern recognition techniques. Taxonomic indexes and phylogenetic trees were used as texture descriptors, and a Support Vector Machine was used for classification. Results The proposed method shows promising results for accurate diagnosis of benign and malignant lung tumors, achieving an accuracy of 88.44%, sensitivity of 84.22%, specificity of 90.06% and area under the ROC curve of 0.8714. Conclusion The results demonstrate the promising performance of texture extraction techniques by means of taxonomic indexes combined with phylogenetic trees. The proposed method achieves results comparable to those previously published. |
id |
SBEB-1_822a1ffd5e40eb36eae59fc3a53db6c2 |
---|---|
oai_identifier_str |
oai:scielo:S2446-47402016000300263 |
network_acronym_str |
SBEB-1 |
network_name_str |
Research on Biomedical Engineering (Online) |
repository_id_str |
|
spelling |
Taxonomic indexes for differentiating malignancy of lung nodules on CT imagesMedical imageLung nodule diagnosisTexture analysisTaxonomic indexesAbstract Introduction Lung cancer remains the leading cause of cancer mortality worldwide, with one of the lowest survival rates after diagnosis. Therefore, early detection greatly increases the chances of improving patient survival. Methods This study proposes a method for diagnosis of lung nodules in benign and malignant tumors based on image processing and pattern recognition techniques. Taxonomic indexes and phylogenetic trees were used as texture descriptors, and a Support Vector Machine was used for classification. Results The proposed method shows promising results for accurate diagnosis of benign and malignant lung tumors, achieving an accuracy of 88.44%, sensitivity of 84.22%, specificity of 90.06% and area under the ROC curve of 0.8714. Conclusion The results demonstrate the promising performance of texture extraction techniques by means of taxonomic indexes combined with phylogenetic trees. The proposed method achieves results comparable to those previously published.Sociedade Brasileira de Engenharia Biomédica2016-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300263Research on Biomedical Engineering v.32 n.3 2016reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.04615info:eu-repo/semantics/openAccessSilva,Giovanni Lucca França daCarvalho Filho,Antonio Oseas deSilva,Aristófanes CorrêaPaiva,Anselmo Cardoso deGattass,Marceloeng2016-10-24T00:00:00Zoai:scielo:S2446-47402016000300263Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2016-10-24T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false |
dc.title.none.fl_str_mv |
Taxonomic indexes for differentiating malignancy of lung nodules on CT images |
title |
Taxonomic indexes for differentiating malignancy of lung nodules on CT images |
spellingShingle |
Taxonomic indexes for differentiating malignancy of lung nodules on CT images Silva,Giovanni Lucca França da Medical image Lung nodule diagnosis Texture analysis Taxonomic indexes |
title_short |
Taxonomic indexes for differentiating malignancy of lung nodules on CT images |
title_full |
Taxonomic indexes for differentiating malignancy of lung nodules on CT images |
title_fullStr |
Taxonomic indexes for differentiating malignancy of lung nodules on CT images |
title_full_unstemmed |
Taxonomic indexes for differentiating malignancy of lung nodules on CT images |
title_sort |
Taxonomic indexes for differentiating malignancy of lung nodules on CT images |
author |
Silva,Giovanni Lucca França da |
author_facet |
Silva,Giovanni Lucca França da Carvalho Filho,Antonio Oseas de Silva,Aristófanes Corrêa Paiva,Anselmo Cardoso de Gattass,Marcelo |
author_role |
author |
author2 |
Carvalho Filho,Antonio Oseas de Silva,Aristófanes Corrêa Paiva,Anselmo Cardoso de Gattass,Marcelo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Silva,Giovanni Lucca França da Carvalho Filho,Antonio Oseas de Silva,Aristófanes Corrêa Paiva,Anselmo Cardoso de Gattass,Marcelo |
dc.subject.por.fl_str_mv |
Medical image Lung nodule diagnosis Texture analysis Taxonomic indexes |
topic |
Medical image Lung nodule diagnosis Texture analysis Taxonomic indexes |
description |
Abstract Introduction Lung cancer remains the leading cause of cancer mortality worldwide, with one of the lowest survival rates after diagnosis. Therefore, early detection greatly increases the chances of improving patient survival. Methods This study proposes a method for diagnosis of lung nodules in benign and malignant tumors based on image processing and pattern recognition techniques. Taxonomic indexes and phylogenetic trees were used as texture descriptors, and a Support Vector Machine was used for classification. Results The proposed method shows promising results for accurate diagnosis of benign and malignant lung tumors, achieving an accuracy of 88.44%, sensitivity of 84.22%, specificity of 90.06% and area under the ROC curve of 0.8714. Conclusion The results demonstrate the promising performance of texture extraction techniques by means of taxonomic indexes combined with phylogenetic trees. The proposed method achieves results comparable to those previously published. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300263 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300263 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2446-4740.04615 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
Research on Biomedical Engineering v.32 n.3 2016 reponame:Research on Biomedical Engineering (Online) instname:Sociedade Brasileira de Engenharia Biomédica (SBEB) instacron:SBEB |
instname_str |
Sociedade Brasileira de Engenharia Biomédica (SBEB) |
instacron_str |
SBEB |
institution |
SBEB |
reponame_str |
Research on Biomedical Engineering (Online) |
collection |
Research on Biomedical Engineering (Online) |
repository.name.fl_str_mv |
Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB) |
repository.mail.fl_str_mv |
||rbe@rbejournal.org |
_version_ |
1752126288629334016 |