Taxonomic indexes for differentiating malignancy of lung nodules on CT images

Detalhes bibliográficos
Autor(a) principal: Silva,Giovanni Lucca França da
Data de Publicação: 2016
Outros Autores: Carvalho Filho,Antonio Oseas de, Silva,Aristófanes Corrêa, Paiva,Anselmo Cardoso de, Gattass,Marcelo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research on Biomedical Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300263
Resumo: Abstract Introduction Lung cancer remains the leading cause of cancer mortality worldwide, with one of the lowest survival rates after diagnosis. Therefore, early detection greatly increases the chances of improving patient survival. Methods This study proposes a method for diagnosis of lung nodules in benign and malignant tumors based on image processing and pattern recognition techniques. Taxonomic indexes and phylogenetic trees were used as texture descriptors, and a Support Vector Machine was used for classification. Results The proposed method shows promising results for accurate diagnosis of benign and malignant lung tumors, achieving an accuracy of 88.44%, sensitivity of 84.22%, specificity of 90.06% and area under the ROC curve of 0.8714. Conclusion The results demonstrate the promising performance of texture extraction techniques by means of taxonomic indexes combined with phylogenetic trees. The proposed method achieves results comparable to those previously published.
id SBEB-1_822a1ffd5e40eb36eae59fc3a53db6c2
oai_identifier_str oai:scielo:S2446-47402016000300263
network_acronym_str SBEB-1
network_name_str Research on Biomedical Engineering (Online)
repository_id_str
spelling Taxonomic indexes for differentiating malignancy of lung nodules on CT imagesMedical imageLung nodule diagnosisTexture analysisTaxonomic indexesAbstract Introduction Lung cancer remains the leading cause of cancer mortality worldwide, with one of the lowest survival rates after diagnosis. Therefore, early detection greatly increases the chances of improving patient survival. Methods This study proposes a method for diagnosis of lung nodules in benign and malignant tumors based on image processing and pattern recognition techniques. Taxonomic indexes and phylogenetic trees were used as texture descriptors, and a Support Vector Machine was used for classification. Results The proposed method shows promising results for accurate diagnosis of benign and malignant lung tumors, achieving an accuracy of 88.44%, sensitivity of 84.22%, specificity of 90.06% and area under the ROC curve of 0.8714. Conclusion The results demonstrate the promising performance of texture extraction techniques by means of taxonomic indexes combined with phylogenetic trees. The proposed method achieves results comparable to those previously published.Sociedade Brasileira de Engenharia Biomédica2016-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300263Research on Biomedical Engineering v.32 n.3 2016reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.04615info:eu-repo/semantics/openAccessSilva,Giovanni Lucca França daCarvalho Filho,Antonio Oseas deSilva,Aristófanes CorrêaPaiva,Anselmo Cardoso deGattass,Marceloeng2016-10-24T00:00:00Zoai:scielo:S2446-47402016000300263Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2016-10-24T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false
dc.title.none.fl_str_mv Taxonomic indexes for differentiating malignancy of lung nodules on CT images
title Taxonomic indexes for differentiating malignancy of lung nodules on CT images
spellingShingle Taxonomic indexes for differentiating malignancy of lung nodules on CT images
Silva,Giovanni Lucca França da
Medical image
Lung nodule diagnosis
Texture analysis
Taxonomic indexes
title_short Taxonomic indexes for differentiating malignancy of lung nodules on CT images
title_full Taxonomic indexes for differentiating malignancy of lung nodules on CT images
title_fullStr Taxonomic indexes for differentiating malignancy of lung nodules on CT images
title_full_unstemmed Taxonomic indexes for differentiating malignancy of lung nodules on CT images
title_sort Taxonomic indexes for differentiating malignancy of lung nodules on CT images
author Silva,Giovanni Lucca França da
author_facet Silva,Giovanni Lucca França da
Carvalho Filho,Antonio Oseas de
Silva,Aristófanes Corrêa
Paiva,Anselmo Cardoso de
Gattass,Marcelo
author_role author
author2 Carvalho Filho,Antonio Oseas de
Silva,Aristófanes Corrêa
Paiva,Anselmo Cardoso de
Gattass,Marcelo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva,Giovanni Lucca França da
Carvalho Filho,Antonio Oseas de
Silva,Aristófanes Corrêa
Paiva,Anselmo Cardoso de
Gattass,Marcelo
dc.subject.por.fl_str_mv Medical image
Lung nodule diagnosis
Texture analysis
Taxonomic indexes
topic Medical image
Lung nodule diagnosis
Texture analysis
Taxonomic indexes
description Abstract Introduction Lung cancer remains the leading cause of cancer mortality worldwide, with one of the lowest survival rates after diagnosis. Therefore, early detection greatly increases the chances of improving patient survival. Methods This study proposes a method for diagnosis of lung nodules in benign and malignant tumors based on image processing and pattern recognition techniques. Taxonomic indexes and phylogenetic trees were used as texture descriptors, and a Support Vector Machine was used for classification. Results The proposed method shows promising results for accurate diagnosis of benign and malignant lung tumors, achieving an accuracy of 88.44%, sensitivity of 84.22%, specificity of 90.06% and area under the ROC curve of 0.8714. Conclusion The results demonstrate the promising performance of texture extraction techniques by means of taxonomic indexes combined with phylogenetic trees. The proposed method achieves results comparable to those previously published.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300263
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402016000300263
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2446-4740.04615
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
dc.source.none.fl_str_mv Research on Biomedical Engineering v.32 n.3 2016
reponame:Research on Biomedical Engineering (Online)
instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron:SBEB
instname_str Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron_str SBEB
institution SBEB
reponame_str Research on Biomedical Engineering (Online)
collection Research on Biomedical Engineering (Online)
repository.name.fl_str_mv Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)
repository.mail.fl_str_mv ||rbe@rbejournal.org
_version_ 1752126288629334016