The role of transition regime models for corn prices forecasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista de Economia e Sociologia Rural |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-20032022000200209 |
Resumo: | Abstract: Given the relevance of corn for food and fuel industries, analysts and scholars are constantly comparing the forecasting accuracy of econometric models. These exercises test not only for the use of new approaches and methods, but also for the addition of fundamental variables linked to the corn market. This paper compares the accuracy of different usual models in financial macro-econometric literature for the period between 1995 and 2017. The main contribution lies in the use of transition regime models, which accommodate structural breaks and perform better for corn price forecasting. The results point out that the best models as those which consider not only the corn market structure, or macroeconomic and financial fundamentals, but also the non-linear trend and transition regimes, such as threshold autoregressive models. |
id |
SBESR-1_f7593aeec5ab3d60429459827971072b |
---|---|
oai_identifier_str |
oai:scielo:S0103-20032022000200209 |
network_acronym_str |
SBESR-1 |
network_name_str |
Revista de Economia e Sociologia Rural |
repository_id_str |
|
spelling |
The role of transition regime models for corn prices forecastingforecastingcorn pricesaccuracyeconometric modelsAbstract: Given the relevance of corn for food and fuel industries, analysts and scholars are constantly comparing the forecasting accuracy of econometric models. These exercises test not only for the use of new approaches and methods, but also for the addition of fundamental variables linked to the corn market. This paper compares the accuracy of different usual models in financial macro-econometric literature for the period between 1995 and 2017. The main contribution lies in the use of transition regime models, which accommodate structural breaks and perform better for corn price forecasting. The results point out that the best models as those which consider not only the corn market structure, or macroeconomic and financial fundamentals, but also the non-linear trend and transition regimes, such as threshold autoregressive models.Sociedade Brasileira de Economia e Sociologia Rural2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-20032022000200209Revista de Economia e Sociologia Rural v.60 n.2 2022reponame:Revista de Economia e Sociologia Ruralinstname:Sociedade Brasileira de Economia e Sociologia Rural (SBESR)instacron:SBESR10.1590/1806-9479.2021.236922info:eu-repo/semantics/openAccessAlbuquerquemello,Vinícius Phillipe deMedeiros,Rennan Kertlly deJesus,Diego Pitta deOliveira,Felipe Araujo deeng2021-08-18T00:00:00Zoai:scielo:S0103-20032022000200209Revistahttps://www.revistasober.org/ONGhttps://old.scielo.br/oai/scielo-oai.phpsober@sober.org.br||resr@revistasober.org1806-94790103-2003opendoar:2021-08-18T00:00Revista de Economia e Sociologia Rural - Sociedade Brasileira de Economia e Sociologia Rural (SBESR)false |
dc.title.none.fl_str_mv |
The role of transition regime models for corn prices forecasting |
title |
The role of transition regime models for corn prices forecasting |
spellingShingle |
The role of transition regime models for corn prices forecasting Albuquerquemello,Vinícius Phillipe de forecasting corn prices accuracy econometric models |
title_short |
The role of transition regime models for corn prices forecasting |
title_full |
The role of transition regime models for corn prices forecasting |
title_fullStr |
The role of transition regime models for corn prices forecasting |
title_full_unstemmed |
The role of transition regime models for corn prices forecasting |
title_sort |
The role of transition regime models for corn prices forecasting |
author |
Albuquerquemello,Vinícius Phillipe de |
author_facet |
Albuquerquemello,Vinícius Phillipe de Medeiros,Rennan Kertlly de Jesus,Diego Pitta de Oliveira,Felipe Araujo de |
author_role |
author |
author2 |
Medeiros,Rennan Kertlly de Jesus,Diego Pitta de Oliveira,Felipe Araujo de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Albuquerquemello,Vinícius Phillipe de Medeiros,Rennan Kertlly de Jesus,Diego Pitta de Oliveira,Felipe Araujo de |
dc.subject.por.fl_str_mv |
forecasting corn prices accuracy econometric models |
topic |
forecasting corn prices accuracy econometric models |
description |
Abstract: Given the relevance of corn for food and fuel industries, analysts and scholars are constantly comparing the forecasting accuracy of econometric models. These exercises test not only for the use of new approaches and methods, but also for the addition of fundamental variables linked to the corn market. This paper compares the accuracy of different usual models in financial macro-econometric literature for the period between 1995 and 2017. The main contribution lies in the use of transition regime models, which accommodate structural breaks and perform better for corn price forecasting. The results point out that the best models as those which consider not only the corn market structure, or macroeconomic and financial fundamentals, but also the non-linear trend and transition regimes, such as threshold autoregressive models. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-20032022000200209 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-20032022000200209 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9479.2021.236922 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Economia e Sociologia Rural |
publisher.none.fl_str_mv |
Sociedade Brasileira de Economia e Sociologia Rural |
dc.source.none.fl_str_mv |
Revista de Economia e Sociologia Rural v.60 n.2 2022 reponame:Revista de Economia e Sociologia Rural instname:Sociedade Brasileira de Economia e Sociologia Rural (SBESR) instacron:SBESR |
instname_str |
Sociedade Brasileira de Economia e Sociologia Rural (SBESR) |
instacron_str |
SBESR |
institution |
SBESR |
reponame_str |
Revista de Economia e Sociologia Rural |
collection |
Revista de Economia e Sociologia Rural |
repository.name.fl_str_mv |
Revista de Economia e Sociologia Rural - Sociedade Brasileira de Economia e Sociologia Rural (SBESR) |
repository.mail.fl_str_mv |
sober@sober.org.br||resr@revistasober.org |
_version_ |
1752122558614863872 |