The role of transition regime models for corn prices forecasting

Detalhes bibliográficos
Autor(a) principal: Albuquerquemello,Vinícius Phillipe de
Data de Publicação: 2022
Outros Autores: Medeiros,Rennan Kertlly de, Jesus,Diego Pitta de, Oliveira,Felipe Araujo de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista de Economia e Sociologia Rural
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-20032022000200209
Resumo: Abstract: Given the relevance of corn for food and fuel industries, analysts and scholars are constantly comparing the forecasting accuracy of econometric models. These exercises test not only for the use of new approaches and methods, but also for the addition of fundamental variables linked to the corn market. This paper compares the accuracy of different usual models in financial macro-econometric literature for the period between 1995 and 2017. The main contribution lies in the use of transition regime models, which accommodate structural breaks and perform better for corn price forecasting. The results point out that the best models as those which consider not only the corn market structure, or macroeconomic and financial fundamentals, but also the non-linear trend and transition regimes, such as threshold autoregressive models.
id SBESR-1_f7593aeec5ab3d60429459827971072b
oai_identifier_str oai:scielo:S0103-20032022000200209
network_acronym_str SBESR-1
network_name_str Revista de Economia e Sociologia Rural
repository_id_str
spelling The role of transition regime models for corn prices forecastingforecastingcorn pricesaccuracyeconometric modelsAbstract: Given the relevance of corn for food and fuel industries, analysts and scholars are constantly comparing the forecasting accuracy of econometric models. These exercises test not only for the use of new approaches and methods, but also for the addition of fundamental variables linked to the corn market. This paper compares the accuracy of different usual models in financial macro-econometric literature for the period between 1995 and 2017. The main contribution lies in the use of transition regime models, which accommodate structural breaks and perform better for corn price forecasting. The results point out that the best models as those which consider not only the corn market structure, or macroeconomic and financial fundamentals, but also the non-linear trend and transition regimes, such as threshold autoregressive models.Sociedade Brasileira de Economia e Sociologia Rural2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-20032022000200209Revista de Economia e Sociologia Rural v.60 n.2 2022reponame:Revista de Economia e Sociologia Ruralinstname:Sociedade Brasileira de Economia e Sociologia Rural (SBESR)instacron:SBESR10.1590/1806-9479.2021.236922info:eu-repo/semantics/openAccessAlbuquerquemello,Vinícius Phillipe deMedeiros,Rennan Kertlly deJesus,Diego Pitta deOliveira,Felipe Araujo deeng2021-08-18T00:00:00Zoai:scielo:S0103-20032022000200209Revistahttps://www.revistasober.org/ONGhttps://old.scielo.br/oai/scielo-oai.phpsober@sober.org.br||resr@revistasober.org1806-94790103-2003opendoar:2021-08-18T00:00Revista de Economia e Sociologia Rural - Sociedade Brasileira de Economia e Sociologia Rural (SBESR)false
dc.title.none.fl_str_mv The role of transition regime models for corn prices forecasting
title The role of transition regime models for corn prices forecasting
spellingShingle The role of transition regime models for corn prices forecasting
Albuquerquemello,Vinícius Phillipe de
forecasting
corn prices
accuracy
econometric models
title_short The role of transition regime models for corn prices forecasting
title_full The role of transition regime models for corn prices forecasting
title_fullStr The role of transition regime models for corn prices forecasting
title_full_unstemmed The role of transition regime models for corn prices forecasting
title_sort The role of transition regime models for corn prices forecasting
author Albuquerquemello,Vinícius Phillipe de
author_facet Albuquerquemello,Vinícius Phillipe de
Medeiros,Rennan Kertlly de
Jesus,Diego Pitta de
Oliveira,Felipe Araujo de
author_role author
author2 Medeiros,Rennan Kertlly de
Jesus,Diego Pitta de
Oliveira,Felipe Araujo de
author2_role author
author
author
dc.contributor.author.fl_str_mv Albuquerquemello,Vinícius Phillipe de
Medeiros,Rennan Kertlly de
Jesus,Diego Pitta de
Oliveira,Felipe Araujo de
dc.subject.por.fl_str_mv forecasting
corn prices
accuracy
econometric models
topic forecasting
corn prices
accuracy
econometric models
description Abstract: Given the relevance of corn for food and fuel industries, analysts and scholars are constantly comparing the forecasting accuracy of econometric models. These exercises test not only for the use of new approaches and methods, but also for the addition of fundamental variables linked to the corn market. This paper compares the accuracy of different usual models in financial macro-econometric literature for the period between 1995 and 2017. The main contribution lies in the use of transition regime models, which accommodate structural breaks and perform better for corn price forecasting. The results point out that the best models as those which consider not only the corn market structure, or macroeconomic and financial fundamentals, but also the non-linear trend and transition regimes, such as threshold autoregressive models.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-20032022000200209
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-20032022000200209
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1806-9479.2021.236922
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Economia e Sociologia Rural
publisher.none.fl_str_mv Sociedade Brasileira de Economia e Sociologia Rural
dc.source.none.fl_str_mv Revista de Economia e Sociologia Rural v.60 n.2 2022
reponame:Revista de Economia e Sociologia Rural
instname:Sociedade Brasileira de Economia e Sociologia Rural (SBESR)
instacron:SBESR
instname_str Sociedade Brasileira de Economia e Sociologia Rural (SBESR)
instacron_str SBESR
institution SBESR
reponame_str Revista de Economia e Sociologia Rural
collection Revista de Economia e Sociologia Rural
repository.name.fl_str_mv Revista de Economia e Sociologia Rural - Sociedade Brasileira de Economia e Sociologia Rural (SBESR)
repository.mail.fl_str_mv sober@sober.org.br||resr@revistasober.org
_version_ 1752122558614863872