Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100004 |
Resumo: | In this work, Green's functions for the two-dimensional wave, Helmholtz and Poisson equations are calculated in the entire plane domain by means of the two-dimensional Fourier transform. New procedures are provided for the evaluation of the improper double integrals related to the inverse Fourier transforms that furnish these Green's functions. The integrals are calculated by using contour integration in the complex plane. The method consists basically in applying the correct prescription for circumventing the real poles of the integrand as well as in using well-known integral representations of some Bessel functions. |
id |
SBF-1_e2fc94bc30ec4fed19251c9dc369718f |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172013000100004 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domainGreen's functionHelmholtz equationtwo dimensionsIn this work, Green's functions for the two-dimensional wave, Helmholtz and Poisson equations are calculated in the entire plane domain by means of the two-dimensional Fourier transform. New procedures are provided for the evaluation of the improper double integrals related to the inverse Fourier transforms that furnish these Green's functions. The integrals are calculated by using contour integration in the complex plane. The method consists basically in applying the correct prescription for circumventing the real poles of the integrand as well as in using well-known integral representations of some Bessel functions.Sociedade Brasileira de Física2013-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100004Revista Brasileira de Ensino de Física v.35 n.1 2013reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S1806-11172013000100004info:eu-repo/semantics/openAccessCouto,Roberto Toscanoeng2020-10-07T00:00:00Zoai:scielo:S1806-11172013000100004Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2020-10-07T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain |
title |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain |
spellingShingle |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain Couto,Roberto Toscano Green's function Helmholtz equation two dimensions |
title_short |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain |
title_full |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain |
title_fullStr |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain |
title_full_unstemmed |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain |
title_sort |
Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain |
author |
Couto,Roberto Toscano |
author_facet |
Couto,Roberto Toscano |
author_role |
author |
dc.contributor.author.fl_str_mv |
Couto,Roberto Toscano |
dc.subject.por.fl_str_mv |
Green's function Helmholtz equation two dimensions |
topic |
Green's function Helmholtz equation two dimensions |
description |
In this work, Green's functions for the two-dimensional wave, Helmholtz and Poisson equations are calculated in the entire plane domain by means of the two-dimensional Fourier transform. New procedures are provided for the evaluation of the improper double integrals related to the inverse Fourier transforms that furnish these Green's functions. The integrals are calculated by using contour integration in the complex plane. The method consists basically in applying the correct prescription for circumventing the real poles of the integrand as well as in using well-known integral representations of some Bessel functions. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1806-11172013000100004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.35 n.1 2013 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122421752627200 |