Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips

Detalhes bibliográficos
Autor(a) principal: Matsumoto,Silvia Tamie
Data de Publicação: 2006
Outros Autores: Mantovani,Mário Sérgio, Malaguttii,Mirtis Irene Ariza, Dias,Ana Lúcia, Fonseca,Inês Cristina, Marin-Morales,Maria Aparecida
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572006000100028
Resumo: Cytotoxicity of metals is important because some metals are potential mutagens able to induce tumors in humans and experimental animals. Chromium can damage DNA in several ways, including DNA double strand breaks (DSBs) which generate chromosomal aberrations, micronucleus formation, sister chromatid exchange, formation of DNA adducts and alterations in DNA replication and transcription. In our study, water samples from three sites in the Córrego dos Bagres stream in the Franca municipality of the Brazilian state of São Paulo were subjected to the comet assay and micronucleus test using erythrocytes from the fish Oreochromis niloticus. Nuclear abnormalities of the erythrocytes included blebbed, notched and lobed nuclei, probably due to genotoxic chromium compounds. The greatest comet assay damage occurred with water from a chromium-containing tannery effluent discharge site, supporting the hypothesis that chromium residues can be genotoxic. The mutagenicity of the water samples was assessed using the onion root-tip cell assay, the most frequent chromosomal abnormalities observed being: c-metaphases, stick chromosome, chromosome breaks and losses, bridged anaphases, multipolar anaphases, and micronucleated and binucleated cells. Onion root-tip cell mutagenicity was highest for water samples containing the highest levels of chromium.
id SBG-1_316fc5d2eea02a8b029c1f4e0ec21453
oai_identifier_str oai:scielo:S1415-47572006000100028
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tipsAllium cepachromiumchromosomes aberrationscomet assaymicronucleusOreochromis niloticusCytotoxicity of metals is important because some metals are potential mutagens able to induce tumors in humans and experimental animals. Chromium can damage DNA in several ways, including DNA double strand breaks (DSBs) which generate chromosomal aberrations, micronucleus formation, sister chromatid exchange, formation of DNA adducts and alterations in DNA replication and transcription. In our study, water samples from three sites in the Córrego dos Bagres stream in the Franca municipality of the Brazilian state of São Paulo were subjected to the comet assay and micronucleus test using erythrocytes from the fish Oreochromis niloticus. Nuclear abnormalities of the erythrocytes included blebbed, notched and lobed nuclei, probably due to genotoxic chromium compounds. The greatest comet assay damage occurred with water from a chromium-containing tannery effluent discharge site, supporting the hypothesis that chromium residues can be genotoxic. The mutagenicity of the water samples was assessed using the onion root-tip cell assay, the most frequent chromosomal abnormalities observed being: c-metaphases, stick chromosome, chromosome breaks and losses, bridged anaphases, multipolar anaphases, and micronucleated and binucleated cells. Onion root-tip cell mutagenicity was highest for water samples containing the highest levels of chromium.Sociedade Brasileira de Genética2006-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572006000100028Genetics and Molecular Biology v.29 n.1 2006reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572006000100028info:eu-repo/semantics/openAccessMatsumoto,Silvia TamieMantovani,Mário SérgioMalaguttii,Mirtis Irene ArizaDias,Ana LúciaFonseca,Inês CristinaMarin-Morales,Maria Aparecidaeng2006-03-10T00:00:00Zoai:scielo:S1415-47572006000100028Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2006-03-10T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
title Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
spellingShingle Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
Matsumoto,Silvia Tamie
Allium cepa
chromium
chromosomes aberrations
comet assay
micronucleus
Oreochromis niloticus
title_short Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
title_full Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
title_fullStr Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
title_full_unstemmed Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
title_sort Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
author Matsumoto,Silvia Tamie
author_facet Matsumoto,Silvia Tamie
Mantovani,Mário Sérgio
Malaguttii,Mirtis Irene Ariza
Dias,Ana Lúcia
Fonseca,Inês Cristina
Marin-Morales,Maria Aparecida
author_role author
author2 Mantovani,Mário Sérgio
Malaguttii,Mirtis Irene Ariza
Dias,Ana Lúcia
Fonseca,Inês Cristina
Marin-Morales,Maria Aparecida
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Matsumoto,Silvia Tamie
Mantovani,Mário Sérgio
Malaguttii,Mirtis Irene Ariza
Dias,Ana Lúcia
Fonseca,Inês Cristina
Marin-Morales,Maria Aparecida
dc.subject.por.fl_str_mv Allium cepa
chromium
chromosomes aberrations
comet assay
micronucleus
Oreochromis niloticus
topic Allium cepa
chromium
chromosomes aberrations
comet assay
micronucleus
Oreochromis niloticus
description Cytotoxicity of metals is important because some metals are potential mutagens able to induce tumors in humans and experimental animals. Chromium can damage DNA in several ways, including DNA double strand breaks (DSBs) which generate chromosomal aberrations, micronucleus formation, sister chromatid exchange, formation of DNA adducts and alterations in DNA replication and transcription. In our study, water samples from three sites in the Córrego dos Bagres stream in the Franca municipality of the Brazilian state of São Paulo were subjected to the comet assay and micronucleus test using erythrocytes from the fish Oreochromis niloticus. Nuclear abnormalities of the erythrocytes included blebbed, notched and lobed nuclei, probably due to genotoxic chromium compounds. The greatest comet assay damage occurred with water from a chromium-containing tannery effluent discharge site, supporting the hypothesis that chromium residues can be genotoxic. The mutagenicity of the water samples was assessed using the onion root-tip cell assay, the most frequent chromosomal abnormalities observed being: c-metaphases, stick chromosome, chromosome breaks and losses, bridged anaphases, multipolar anaphases, and micronucleated and binucleated cells. Onion root-tip cell mutagenicity was highest for water samples containing the highest levels of chromium.
publishDate 2006
dc.date.none.fl_str_mv 2006-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572006000100028
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572006000100028
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1415-47572006000100028
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.29 n.1 2006
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122379881938944