An integrated approach to identify bimodal genes associated with prognosis in câncer

Detalhes bibliográficos
Autor(a) principal: Justino,Josivan Ribeiro
Data de Publicação: 2021
Outros Autores: Reis,Clovis Ferreira dos, Fonseca,Andre Luis, Souza,Sandro Jose de, Stransky,Beatriz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572021000400801
Resumo: Abstract Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section.
id SBG-1_4de78f753c41ca2437e4634300f25187
oai_identifier_str oai:scielo:S1415-47572021000400801
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling An integrated approach to identify bimodal genes associated with prognosis in câncerCancergene expressionbimodal distributionGaussian Mixture Modelsurvival analysisAbstract Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section.Sociedade Brasileira de Genética2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572021000400801Genetics and Molecular Biology v.44 n.3 2021reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/1678-4685-gmb-2021-0109info:eu-repo/semantics/openAccessJustino,Josivan RibeiroReis,Clovis Ferreira dosFonseca,Andre LuisSouza,Sandro Jose deStransky,Beatrizeng2021-10-01T00:00:00Zoai:scielo:S1415-47572021000400801Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2021-10-01T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv An integrated approach to identify bimodal genes associated with prognosis in câncer
title An integrated approach to identify bimodal genes associated with prognosis in câncer
spellingShingle An integrated approach to identify bimodal genes associated with prognosis in câncer
Justino,Josivan Ribeiro
Cancer
gene expression
bimodal distribution
Gaussian Mixture Model
survival analysis
title_short An integrated approach to identify bimodal genes associated with prognosis in câncer
title_full An integrated approach to identify bimodal genes associated with prognosis in câncer
title_fullStr An integrated approach to identify bimodal genes associated with prognosis in câncer
title_full_unstemmed An integrated approach to identify bimodal genes associated with prognosis in câncer
title_sort An integrated approach to identify bimodal genes associated with prognosis in câncer
author Justino,Josivan Ribeiro
author_facet Justino,Josivan Ribeiro
Reis,Clovis Ferreira dos
Fonseca,Andre Luis
Souza,Sandro Jose de
Stransky,Beatriz
author_role author
author2 Reis,Clovis Ferreira dos
Fonseca,Andre Luis
Souza,Sandro Jose de
Stransky,Beatriz
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Justino,Josivan Ribeiro
Reis,Clovis Ferreira dos
Fonseca,Andre Luis
Souza,Sandro Jose de
Stransky,Beatriz
dc.subject.por.fl_str_mv Cancer
gene expression
bimodal distribution
Gaussian Mixture Model
survival analysis
topic Cancer
gene expression
bimodal distribution
Gaussian Mixture Model
survival analysis
description Abstract Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572021000400801
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572021000400801
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-4685-gmb-2021-0109
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.44 n.3 2021
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122390553296896