An integrated approach to identify bimodal genes associated with prognosis in câncer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Genetics and Molecular Biology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572021000400801 |
Resumo: | Abstract Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section. |
id |
SBG-1_4de78f753c41ca2437e4634300f25187 |
---|---|
oai_identifier_str |
oai:scielo:S1415-47572021000400801 |
network_acronym_str |
SBG-1 |
network_name_str |
Genetics and Molecular Biology |
repository_id_str |
|
spelling |
An integrated approach to identify bimodal genes associated with prognosis in câncerCancergene expressionbimodal distributionGaussian Mixture Modelsurvival analysisAbstract Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section.Sociedade Brasileira de Genética2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572021000400801Genetics and Molecular Biology v.44 n.3 2021reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/1678-4685-gmb-2021-0109info:eu-repo/semantics/openAccessJustino,Josivan RibeiroReis,Clovis Ferreira dosFonseca,Andre LuisSouza,Sandro Jose deStransky,Beatrizeng2021-10-01T00:00:00Zoai:scielo:S1415-47572021000400801Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2021-10-01T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false |
dc.title.none.fl_str_mv |
An integrated approach to identify bimodal genes associated with prognosis in câncer |
title |
An integrated approach to identify bimodal genes associated with prognosis in câncer |
spellingShingle |
An integrated approach to identify bimodal genes associated with prognosis in câncer Justino,Josivan Ribeiro Cancer gene expression bimodal distribution Gaussian Mixture Model survival analysis |
title_short |
An integrated approach to identify bimodal genes associated with prognosis in câncer |
title_full |
An integrated approach to identify bimodal genes associated with prognosis in câncer |
title_fullStr |
An integrated approach to identify bimodal genes associated with prognosis in câncer |
title_full_unstemmed |
An integrated approach to identify bimodal genes associated with prognosis in câncer |
title_sort |
An integrated approach to identify bimodal genes associated with prognosis in câncer |
author |
Justino,Josivan Ribeiro |
author_facet |
Justino,Josivan Ribeiro Reis,Clovis Ferreira dos Fonseca,Andre Luis Souza,Sandro Jose de Stransky,Beatriz |
author_role |
author |
author2 |
Reis,Clovis Ferreira dos Fonseca,Andre Luis Souza,Sandro Jose de Stransky,Beatriz |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Justino,Josivan Ribeiro Reis,Clovis Ferreira dos Fonseca,Andre Luis Souza,Sandro Jose de Stransky,Beatriz |
dc.subject.por.fl_str_mv |
Cancer gene expression bimodal distribution Gaussian Mixture Model survival analysis |
topic |
Cancer gene expression bimodal distribution Gaussian Mixture Model survival analysis |
description |
Abstract Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572021000400801 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572021000400801 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4685-gmb-2021-0109 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Genética |
publisher.none.fl_str_mv |
Sociedade Brasileira de Genética |
dc.source.none.fl_str_mv |
Genetics and Molecular Biology v.44 n.3 2021 reponame:Genetics and Molecular Biology instname:Sociedade Brasileira de Genética (SBG) instacron:SBG |
instname_str |
Sociedade Brasileira de Genética (SBG) |
instacron_str |
SBG |
institution |
SBG |
reponame_str |
Genetics and Molecular Biology |
collection |
Genetics and Molecular Biology |
repository.name.fl_str_mv |
Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG) |
repository.mail.fl_str_mv |
||editor@gmb.org.br |
_version_ |
1752122390553296896 |