An integrated approach to identify bimodal genes associated with prognosis in cancer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/47071 |
Resumo: | Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section |
id |
UFRN_40fbe6bc6adb45b0ed56a1bc80436466 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/47071 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Justino, Josivan RibeiroReis, Clovis Ferreira dosFonseca, André LuizSouza, Sandro José deStransky, Beatriz2022-04-29T16:34:17Z2022-04-29T16:34:17Z2021-07-08JUSTINO, Josivan Ribeiro; REIS, Clovis Ferreira dos; FONSECA, André Luiz; SOUZA, Sandro José de; STRANSKY, Beatriz. An integrated approach to identify bimodal genes associated with prognosis in cancer. Genetics and Molecular Biology, Ribeirão Preto, v. 44, n.3, p.1-8, 2021. Disponível em: https://www.scielo.br/j/gmb/a/cPtFJjpHJf5yWTz7bVWdyvx/?lang=en. Acesso em: 29 abr. 2022.https://repositorio.ufrn.br/handle/123456789/4707110.1590/1678-4685-GMB-2021-0109FapUNIFESP (SciELO)Attribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessCancerGene expressionsBimodal distributionGaussian Mixture ModelSurvival analysisAn integrated approach to identify bimodal genes associated with prognosis in cancerinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access sectionengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALAnIntegratedApproach_Souza_2021.pdfAnIntegratedApproach_Souza_2021.pdfAnIntegratedApproach_Souza_2021application/pdf3817479https://repositorio.ufrn.br/bitstream/123456789/47071/1/AnIntegratedApproach_Souza_2021.pdf75c1abb24f958ca1f5049a87897f0d94MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/47071/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/47071/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/470712022-04-29 13:34:18.099oai:https://repositorio.ufrn.br:123456789/47071Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-04-29T16:34:18Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
An integrated approach to identify bimodal genes associated with prognosis in cancer |
title |
An integrated approach to identify bimodal genes associated with prognosis in cancer |
spellingShingle |
An integrated approach to identify bimodal genes associated with prognosis in cancer Justino, Josivan Ribeiro Cancer Gene expressions Bimodal distribution Gaussian Mixture Model Survival analysis |
title_short |
An integrated approach to identify bimodal genes associated with prognosis in cancer |
title_full |
An integrated approach to identify bimodal genes associated with prognosis in cancer |
title_fullStr |
An integrated approach to identify bimodal genes associated with prognosis in cancer |
title_full_unstemmed |
An integrated approach to identify bimodal genes associated with prognosis in cancer |
title_sort |
An integrated approach to identify bimodal genes associated with prognosis in cancer |
author |
Justino, Josivan Ribeiro |
author_facet |
Justino, Josivan Ribeiro Reis, Clovis Ferreira dos Fonseca, André Luiz Souza, Sandro José de Stransky, Beatriz |
author_role |
author |
author2 |
Reis, Clovis Ferreira dos Fonseca, André Luiz Souza, Sandro José de Stransky, Beatriz |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Justino, Josivan Ribeiro Reis, Clovis Ferreira dos Fonseca, André Luiz Souza, Sandro José de Stransky, Beatriz |
dc.subject.por.fl_str_mv |
Cancer Gene expressions Bimodal distribution Gaussian Mixture Model Survival analysis |
topic |
Cancer Gene expressions Bimodal distribution Gaussian Mixture Model Survival analysis |
description |
Bimodal gene expression (where a gene expression distribution has two maxima) is associated with phenotypic diversity in different biological systems. A critical issue, thus, is the integration of expression and phenotype data to identify genuine associations. Here, we developed tools that allow both: i) the identification of genes with bimodal gene expression and ii) their association with prognosis in cancer patients from The Cancer Genome Atlas (TCGA). Bimodality was observed for 554 genes in expression data from 25 tumor types. Furthermore, 96 of these genes presented different prognosis when patients belonging to the two expression peaks were compared. The software to execute the method and the corresponding documentation are available at the Data access section |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-07-08 |
dc.date.accessioned.fl_str_mv |
2022-04-29T16:34:17Z |
dc.date.available.fl_str_mv |
2022-04-29T16:34:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
JUSTINO, Josivan Ribeiro; REIS, Clovis Ferreira dos; FONSECA, André Luiz; SOUZA, Sandro José de; STRANSKY, Beatriz. An integrated approach to identify bimodal genes associated with prognosis in cancer. Genetics and Molecular Biology, Ribeirão Preto, v. 44, n.3, p.1-8, 2021. Disponível em: https://www.scielo.br/j/gmb/a/cPtFJjpHJf5yWTz7bVWdyvx/?lang=en. Acesso em: 29 abr. 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/47071 |
dc.identifier.doi.none.fl_str_mv |
10.1590/1678-4685-GMB-2021-0109 |
identifier_str_mv |
JUSTINO, Josivan Ribeiro; REIS, Clovis Ferreira dos; FONSECA, André Luiz; SOUZA, Sandro José de; STRANSKY, Beatriz. An integrated approach to identify bimodal genes associated with prognosis in cancer. Genetics and Molecular Biology, Ribeirão Preto, v. 44, n.3, p.1-8, 2021. Disponível em: https://www.scielo.br/j/gmb/a/cPtFJjpHJf5yWTz7bVWdyvx/?lang=en. Acesso em: 29 abr. 2022. 10.1590/1678-4685-GMB-2021-0109 |
url |
https://repositorio.ufrn.br/handle/123456789/47071 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
FapUNIFESP (SciELO) |
publisher.none.fl_str_mv |
FapUNIFESP (SciELO) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/47071/1/AnIntegratedApproach_Souza_2021.pdf https://repositorio.ufrn.br/bitstream/123456789/47071/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/47071/3/license.txt |
bitstream.checksum.fl_str_mv |
75c1abb24f958ca1f5049a87897f0d94 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832881093050368 |