On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000300367 |
Resumo: | ABSTRACT. If a graph G has exactly t different sizes of maximal independent sets, G belongs to a collection called ℳ t . For the Cartesian product of the graph Pn , the path of length n, and Cm , the cycle of length m, called cylindrical grid, we present a method to find maximal independent sets having different sizes and a lower bound on t, such that these graphs belong to ℳ t . |
id |
SBMAC-1_0b0d122a8e36254256b73ffad858d018 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512016000300367 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
On the Sizes of Maximal Independent Sets of Cylindrical Grid GraphsWell-covered graphmaximal independent setCartesian productABSTRACT. If a graph G has exactly t different sizes of maximal independent sets, G belongs to a collection called ℳ t . For the Cartesian product of the graph Pn , the path of length n, and Cm , the cycle of length m, called cylindrical grid, we present a method to find maximal independent sets having different sizes and a lower bound on t, such that these graphs belong to ℳ t .Sociedade Brasileira de Matemática Aplicada e Computacional2016-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000300367TEMA (São Carlos) v.17 n.3 2016reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2016.017.03.0367info:eu-repo/semantics/openAccessBARBOSA,R.M.CAPPELLE,M.R.eng2017-01-05T00:00:00Zoai:scielo:S2179-84512016000300367Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2017-01-05T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs |
title |
On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs |
spellingShingle |
On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs BARBOSA,R.M. Well-covered graph maximal independent set Cartesian product |
title_short |
On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs |
title_full |
On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs |
title_fullStr |
On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs |
title_full_unstemmed |
On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs |
title_sort |
On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs |
author |
BARBOSA,R.M. |
author_facet |
BARBOSA,R.M. CAPPELLE,M.R. |
author_role |
author |
author2 |
CAPPELLE,M.R. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
BARBOSA,R.M. CAPPELLE,M.R. |
dc.subject.por.fl_str_mv |
Well-covered graph maximal independent set Cartesian product |
topic |
Well-covered graph maximal independent set Cartesian product |
description |
ABSTRACT. If a graph G has exactly t different sizes of maximal independent sets, G belongs to a collection called ℳ t . For the Cartesian product of the graph Pn , the path of length n, and Cm , the cycle of length m, called cylindrical grid, we present a method to find maximal independent sets having different sizes and a lower bound on t, such that these graphs belong to ℳ t . |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000300367 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000300367 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2016.017.03.0367 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.17 n.3 2016 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220193251328 |