On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs

Detalhes bibliográficos
Autor(a) principal: BARBOSA,R.M.
Data de Publicação: 2016
Outros Autores: CAPPELLE,M.R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000300367
Resumo: ABSTRACT. If a graph G has exactly t different sizes of maximal independent sets, G belongs to a collection called ℳ t . For the Cartesian product of the graph Pn , the path of length n, and Cm , the cycle of length m, called cylindrical grid, we present a method to find maximal independent sets having different sizes and a lower bound on t, such that these graphs belong to ℳ t .
id SBMAC-1_0b0d122a8e36254256b73ffad858d018
oai_identifier_str oai:scielo:S2179-84512016000300367
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling On the Sizes of Maximal Independent Sets of Cylindrical Grid GraphsWell-covered graphmaximal independent setCartesian productABSTRACT. If a graph G has exactly t different sizes of maximal independent sets, G belongs to a collection called ℳ t . For the Cartesian product of the graph Pn , the path of length n, and Cm , the cycle of length m, called cylindrical grid, we present a method to find maximal independent sets having different sizes and a lower bound on t, such that these graphs belong to ℳ t .Sociedade Brasileira de Matemática Aplicada e Computacional2016-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000300367TEMA (São Carlos) v.17 n.3 2016reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2016.017.03.0367info:eu-repo/semantics/openAccessBARBOSA,R.M.CAPPELLE,M.R.eng2017-01-05T00:00:00Zoai:scielo:S2179-84512016000300367Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2017-01-05T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
title On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
spellingShingle On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
BARBOSA,R.M.
Well-covered graph
maximal independent set
Cartesian product
title_short On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
title_full On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
title_fullStr On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
title_full_unstemmed On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
title_sort On the Sizes of Maximal Independent Sets of Cylindrical Grid Graphs
author BARBOSA,R.M.
author_facet BARBOSA,R.M.
CAPPELLE,M.R.
author_role author
author2 CAPPELLE,M.R.
author2_role author
dc.contributor.author.fl_str_mv BARBOSA,R.M.
CAPPELLE,M.R.
dc.subject.por.fl_str_mv Well-covered graph
maximal independent set
Cartesian product
topic Well-covered graph
maximal independent set
Cartesian product
description ABSTRACT. If a graph G has exactly t different sizes of maximal independent sets, G belongs to a collection called ℳ t . For the Cartesian product of the graph Pn , the path of length n, and Cm , the cycle of length m, called cylindrical grid, we present a method to find maximal independent sets having different sizes and a lower bound on t, such that these graphs belong to ℳ t .
publishDate 2016
dc.date.none.fl_str_mv 2016-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000300367
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000300367
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2016.017.03.0367
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.17 n.3 2016
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220193251328