Positive Polynomials on Closed Boxes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300509 |
Resumo: | ABSTRACT We present two different proofs that positive polynomials on closed boxes of ℝ 2 can be written as bivariate Bernstein polynomials with strictly positive coefficients. Both strategies can be extended to prove the analogous result for polynomials that are positive on closed boxes of ℝ n, n > 2. |
id |
SBMAC-1_eabf4176f249691e4d6fe00aa09278bf |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512019000300509 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Positive Polynomials on Closed Boxespolinômios positivoshipercubo unitáriopolinômios de BernsteinABSTRACT We present two different proofs that positive polynomials on closed boxes of ℝ 2 can be written as bivariate Bernstein polynomials with strictly positive coefficients. Both strategies can be extended to prove the analogous result for polynomials that are positive on closed boxes of ℝ n, n > 2.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300509TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.0509info:eu-repo/semantics/openAccessDINIZ,M. A.STERN,R. B.SALASAR,L. E.eng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300509Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Positive Polynomials on Closed Boxes |
title |
Positive Polynomials on Closed Boxes |
spellingShingle |
Positive Polynomials on Closed Boxes DINIZ,M. A. polinômios positivos hipercubo unitário polinômios de Bernstein |
title_short |
Positive Polynomials on Closed Boxes |
title_full |
Positive Polynomials on Closed Boxes |
title_fullStr |
Positive Polynomials on Closed Boxes |
title_full_unstemmed |
Positive Polynomials on Closed Boxes |
title_sort |
Positive Polynomials on Closed Boxes |
author |
DINIZ,M. A. |
author_facet |
DINIZ,M. A. STERN,R. B. SALASAR,L. E. |
author_role |
author |
author2 |
STERN,R. B. SALASAR,L. E. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
DINIZ,M. A. STERN,R. B. SALASAR,L. E. |
dc.subject.por.fl_str_mv |
polinômios positivos hipercubo unitário polinômios de Bernstein |
topic |
polinômios positivos hipercubo unitário polinômios de Bernstein |
description |
ABSTRACT We present two different proofs that positive polynomials on closed boxes of ℝ 2 can be written as bivariate Bernstein polynomials with strictly positive coefficients. Both strategies can be extended to prove the analogous result for polynomials that are positive on closed boxes of ℝ n, n > 2. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300509 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300509 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2019.020.03.0509 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.20 n.3 2019 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220628410368 |