Discrete approximations for strict convex continuous time problems and duality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022004000100005 |
Resumo: | We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory. |
id |
SBMAC-2_1b578f446588e04fe53ce0c7e77da354 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022004000100005 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Discrete approximations for strict convex continuous time problems and dualityLinear Quadratic problemsContinuous time optimizationdiscrete approximationstrict convexityWe propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory.Sociedade Brasileira de Matemática Aplicada e Computacional2004-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022004000100005Computational & Applied Mathematics v.23 n.1 2004reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessAndreani,R.Gonçalves,P. S.Silva,G. N.eng2004-11-26T00:00:00Zoai:scielo:S1807-03022004000100005Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-11-26T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Discrete approximations for strict convex continuous time problems and duality |
title |
Discrete approximations for strict convex continuous time problems and duality |
spellingShingle |
Discrete approximations for strict convex continuous time problems and duality Andreani,R. Linear Quadratic problems Continuous time optimization discrete approximation strict convexity |
title_short |
Discrete approximations for strict convex continuous time problems and duality |
title_full |
Discrete approximations for strict convex continuous time problems and duality |
title_fullStr |
Discrete approximations for strict convex continuous time problems and duality |
title_full_unstemmed |
Discrete approximations for strict convex continuous time problems and duality |
title_sort |
Discrete approximations for strict convex continuous time problems and duality |
author |
Andreani,R. |
author_facet |
Andreani,R. Gonçalves,P. S. Silva,G. N. |
author_role |
author |
author2 |
Gonçalves,P. S. Silva,G. N. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Andreani,R. Gonçalves,P. S. Silva,G. N. |
dc.subject.por.fl_str_mv |
Linear Quadratic problems Continuous time optimization discrete approximation strict convexity |
topic |
Linear Quadratic problems Continuous time optimization discrete approximation strict convexity |
description |
We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022004000100005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022004000100005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.23 n.1 2004 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889701212160 |