Discrete approximations for strict convex continuous time problems and duality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/s1807-03022004000100005 http://hdl.handle.net/11449/219774 |
Resumo: | We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory. |
id |
UNSP_f97741e193a2f61e827db343080f5417 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/219774 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Discrete approximations for strict convex continuous time problems and dualityContinuous time optimizationDiscrete approximationLinear Quadratic problemsStrict convexityWe propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Matemática Aplicada IMECC UNICAMPUniversidade de Estadual PaulistaUniversidade de Estadual PaulistaUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (UNESP)Andreani, R.Gonçalves, P. S. [UNESP]Silva, G. N. [UNESP]2022-04-28T18:57:23Z2022-04-28T18:57:23Z2004-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article81-105http://dx.doi.org/10.1590/s1807-03022004000100005Computational and Applied Mathematics, v. 23, n. 1, p. 81-105, 2004.1807-03022238-3603http://hdl.handle.net/11449/21977410.1590/s1807-030220040001000052-s2.0-84858172432Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational and Applied Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T18:57:23Zoai:repositorio.unesp.br:11449/219774Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:53:40.362816Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Discrete approximations for strict convex continuous time problems and duality |
title |
Discrete approximations for strict convex continuous time problems and duality |
spellingShingle |
Discrete approximations for strict convex continuous time problems and duality Andreani, R. Continuous time optimization Discrete approximation Linear Quadratic problems Strict convexity |
title_short |
Discrete approximations for strict convex continuous time problems and duality |
title_full |
Discrete approximations for strict convex continuous time problems and duality |
title_fullStr |
Discrete approximations for strict convex continuous time problems and duality |
title_full_unstemmed |
Discrete approximations for strict convex continuous time problems and duality |
title_sort |
Discrete approximations for strict convex continuous time problems and duality |
author |
Andreani, R. |
author_facet |
Andreani, R. Gonçalves, P. S. [UNESP] Silva, G. N. [UNESP] |
author_role |
author |
author2 |
Gonçalves, P. S. [UNESP] Silva, G. N. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Andreani, R. Gonçalves, P. S. [UNESP] Silva, G. N. [UNESP] |
dc.subject.por.fl_str_mv |
Continuous time optimization Discrete approximation Linear Quadratic problems Strict convexity |
topic |
Continuous time optimization Discrete approximation Linear Quadratic problems Strict convexity |
description |
We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01-01 2022-04-28T18:57:23Z 2022-04-28T18:57:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/s1807-03022004000100005 Computational and Applied Mathematics, v. 23, n. 1, p. 81-105, 2004. 1807-0302 2238-3603 http://hdl.handle.net/11449/219774 10.1590/s1807-03022004000100005 2-s2.0-84858172432 |
url |
http://dx.doi.org/10.1590/s1807-03022004000100005 http://hdl.handle.net/11449/219774 |
identifier_str_mv |
Computational and Applied Mathematics, v. 23, n. 1, p. 81-105, 2004. 1807-0302 2238-3603 10.1590/s1807-03022004000100005 2-s2.0-84858172432 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computational and Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
81-105 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128996804657152 |