Discrete approximations for strict convex continuous time problems and duality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://www.scielo.br/scielo.php?pid=S1807-03022004000100005&script=sci_arttext http://hdl.handle.net/11449/34247 |
Resumo: | We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory. |
id |
UNSP_29fab4d8e9a2fd46cedb1af9ac8cf74f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/34247 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Discrete approximations for strict convex continuous time problems and dualityLinear Quadratic problemsContinuous time optimizationdiscrete approximationstrict convexityWe propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Campinas, Dept Matemat Aplicada, IMECC, Campinas, SP, BrazilUniv Estadual Paulista, Sao Jose do Rio Preto, SP, BrazilUniv Estadual Paulista, Sao Jose do Rio Preto, SP, BrazilSoc Brasileira Matematica Aplicada & ComputacionalUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Andreani, R.Goncalves, P. S. [UNESP]Silva, Geraldo Nunes [UNESP]2014-05-20T15:23:28Z2014-05-20T15:23:28Z2004-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article81-105application/pdfhttp://www.scielo.br/scielo.php?pid=S1807-03022004000100005&script=sci_arttextComputational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004.0101-8205http://hdl.handle.net/11449/34247S1807-03022004000100005WOS:000208135000005WOS000208135000005.pdf3638688119433520Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational & Applied Mathematics0.8630,272info:eu-repo/semantics/openAccess2023-11-14T06:15:35Zoai:repositorio.unesp.br:11449/34247Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:40:57.793690Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Discrete approximations for strict convex continuous time problems and duality |
title |
Discrete approximations for strict convex continuous time problems and duality |
spellingShingle |
Discrete approximations for strict convex continuous time problems and duality Andreani, R. Linear Quadratic problems Continuous time optimization discrete approximation strict convexity |
title_short |
Discrete approximations for strict convex continuous time problems and duality |
title_full |
Discrete approximations for strict convex continuous time problems and duality |
title_fullStr |
Discrete approximations for strict convex continuous time problems and duality |
title_full_unstemmed |
Discrete approximations for strict convex continuous time problems and duality |
title_sort |
Discrete approximations for strict convex continuous time problems and duality |
author |
Andreani, R. |
author_facet |
Andreani, R. Goncalves, P. S. [UNESP] Silva, Geraldo Nunes [UNESP] |
author_role |
author |
author2 |
Goncalves, P. S. [UNESP] Silva, Geraldo Nunes [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Andreani, R. Goncalves, P. S. [UNESP] Silva, Geraldo Nunes [UNESP] |
dc.subject.por.fl_str_mv |
Linear Quadratic problems Continuous time optimization discrete approximation strict convexity |
topic |
Linear Quadratic problems Continuous time optimization discrete approximation strict convexity |
description |
We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01-01 2014-05-20T15:23:28Z 2014-05-20T15:23:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.scielo.br/scielo.php?pid=S1807-03022004000100005&script=sci_arttext Computational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004. 0101-8205 http://hdl.handle.net/11449/34247 S1807-03022004000100005 WOS:000208135000005 WOS000208135000005.pdf 3638688119433520 |
url |
http://www.scielo.br/scielo.php?pid=S1807-03022004000100005&script=sci_arttext http://hdl.handle.net/11449/34247 |
identifier_str_mv |
Computational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004. 0101-8205 S1807-03022004000100005 WOS:000208135000005 WOS000208135000005.pdf 3638688119433520 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computational & Applied Mathematics 0.863 0,272 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
81-105 application/pdf |
dc.publisher.none.fl_str_mv |
Soc Brasileira Matematica Aplicada & Computacional |
publisher.none.fl_str_mv |
Soc Brasileira Matematica Aplicada & Computacional |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128844567150592 |