Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000100007 |
Resumo: | In this paper, an efficient method is presented for solving two dimensional Fredholm and Volterra integral equations of the second kind. Chebyshev polynomials are applied to approximate a solution for these integral equations. This method transforms the integral equation to algebraic equations with unknown Chebyshev coefficients. The high accuracy of this method is verified through some numerical examples. Mathematical subject classification: 65R20, 41A50, 41A55, 65M70. |
id |
SBMAC-2_25746af75738f48f54a0968c10a0ec22 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022012000100007 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kindChebyshev polynomialstwo dimensional integral equationscollocation methodIn this paper, an efficient method is presented for solving two dimensional Fredholm and Volterra integral equations of the second kind. Chebyshev polynomials are applied to approximate a solution for these integral equations. This method transforms the integral equation to algebraic equations with unknown Chebyshev coefficients. The high accuracy of this method is verified through some numerical examples. Mathematical subject classification: 65R20, 41A50, 41A55, 65M70.Sociedade Brasileira de Matemática Aplicada e Computacional2012-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000100007Computational & Applied Mathematics v.31 n.1 2012reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022012000100007info:eu-repo/semantics/openAccessAvazzadeh,ZakiehHeydari,Mohammadeng2012-04-26T00:00:00Zoai:scielo:S1807-03022012000100007Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2012-04-26T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind |
title |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind |
spellingShingle |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind Avazzadeh,Zakieh Chebyshev polynomials two dimensional integral equations collocation method |
title_short |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind |
title_full |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind |
title_fullStr |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind |
title_full_unstemmed |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind |
title_sort |
Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind |
author |
Avazzadeh,Zakieh |
author_facet |
Avazzadeh,Zakieh Heydari,Mohammad |
author_role |
author |
author2 |
Heydari,Mohammad |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Avazzadeh,Zakieh Heydari,Mohammad |
dc.subject.por.fl_str_mv |
Chebyshev polynomials two dimensional integral equations collocation method |
topic |
Chebyshev polynomials two dimensional integral equations collocation method |
description |
In this paper, an efficient method is presented for solving two dimensional Fredholm and Volterra integral equations of the second kind. Chebyshev polynomials are applied to approximate a solution for these integral equations. This method transforms the integral equation to algebraic equations with unknown Chebyshev coefficients. The high accuracy of this method is verified through some numerical examples. Mathematical subject classification: 65R20, 41A50, 41A55, 65M70. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000100007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000100007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022012000100007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.31 n.1 2012 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890412146688 |