New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100006 |
Resumo: | Based on the secant condition often satisfied by quasi-Newton methods, two new versions of the Hestenes-Stiefel (HS) nonlinear conjugate gradient method are proposed, which are descent methods even with inexact line searches. The search directions of the proposed methods have the form d k = - θkg k + βkHSd k-1, or d k = -g k + βkHSd k-1+ θky k-1. When exact line searches are used, the proposed methods reduce to the standard HS method. Convergence properties of the proposed methods are discussed. These results are also extended to some other conjugate gradient methods such as the Polak-Ribiére-Polyak (PRP) method. Numerical results are reported. |
id |
SBMAC-2_2df48d81d075764968bc2d4e16dce8c3 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022009000100006 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimizationHS methoddescent directionglobal convergenceBased on the secant condition often satisfied by quasi-Newton methods, two new versions of the Hestenes-Stiefel (HS) nonlinear conjugate gradient method are proposed, which are descent methods even with inexact line searches. The search directions of the proposed methods have the form d k = - θkg k + βkHSd k-1, or d k = -g k + βkHSd k-1+ θky k-1. When exact line searches are used, the proposed methods reduce to the standard HS method. Convergence properties of the proposed methods are discussed. These results are also extended to some other conjugate gradient methods such as the Polak-Ribiére-Polyak (PRP) method. Numerical results are reported.Sociedade Brasileira de Matemática Aplicada e Computacional2009-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100006Computational & Applied Mathematics v.28 n.1 2009reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessZhang,Lieng2009-03-30T00:00:00Zoai:scielo:S1807-03022009000100006Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2009-03-30T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization |
title |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization |
spellingShingle |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization Zhang,Li HS method descent direction global convergence |
title_short |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization |
title_full |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization |
title_fullStr |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization |
title_full_unstemmed |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization |
title_sort |
New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization |
author |
Zhang,Li |
author_facet |
Zhang,Li |
author_role |
author |
dc.contributor.author.fl_str_mv |
Zhang,Li |
dc.subject.por.fl_str_mv |
HS method descent direction global convergence |
topic |
HS method descent direction global convergence |
description |
Based on the secant condition often satisfied by quasi-Newton methods, two new versions of the Hestenes-Stiefel (HS) nonlinear conjugate gradient method are proposed, which are descent methods even with inexact line searches. The search directions of the proposed methods have the form d k = - θkg k + βkHSd k-1, or d k = -g k + βkHSd k-1+ θky k-1. When exact line searches are used, the proposed methods reduce to the standard HS method. Convergence properties of the proposed methods are discussed. These results are also extended to some other conjugate gradient methods such as the Polak-Ribiére-Polyak (PRP) method. Numerical results are reported. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.28 n.1 2009 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890181459968 |