A weighted projection centering method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100002 |
Resumo: | An iterative method for finding the center of a linear programming polytope is presented. The method assumes that we start at a feasible interior point and each iterate is obtained as a convex combination of the orthogonal projection on the half spaces defined by the linear inequalities plus a special projections on the same half spaces. The algorithm is particularly suitable for implementation on computers with parallel processors. We show some examples in two dimensional space to describe geometrically how the method works. Finally, we present computational results on random generated polytopes and linear programming polytopes from NetLib to compare the centering quality of the center using projections and the analytic center approach. |
id |
SBMAC-2_e987bacd49ca040628cbfa1300baff55 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022003000100002 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
A weighted projection centering methodsuccessive orthogonal projectionscenters of polytopeslinear programmingAn iterative method for finding the center of a linear programming polytope is presented. The method assumes that we start at a feasible interior point and each iterate is obtained as a convex combination of the orthogonal projection on the half spaces defined by the linear inequalities plus a special projections on the same half spaces. The algorithm is particularly suitable for implementation on computers with parallel processors. We show some examples in two dimensional space to describe geometrically how the method works. Finally, we present computational results on random generated polytopes and linear programming polytopes from NetLib to compare the centering quality of the center using projections and the analytic center approach.Sociedade Brasileira de Matemática Aplicada e Computacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100002Computational & Applied Mathematics v.22 n.1 2003reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessMoretti,Antonio Carloseng2004-07-19T00:00:00Zoai:scielo:S1807-03022003000100002Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-07-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
A weighted projection centering method |
title |
A weighted projection centering method |
spellingShingle |
A weighted projection centering method Moretti,Antonio Carlos successive orthogonal projections centers of polytopes linear programming |
title_short |
A weighted projection centering method |
title_full |
A weighted projection centering method |
title_fullStr |
A weighted projection centering method |
title_full_unstemmed |
A weighted projection centering method |
title_sort |
A weighted projection centering method |
author |
Moretti,Antonio Carlos |
author_facet |
Moretti,Antonio Carlos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Moretti,Antonio Carlos |
dc.subject.por.fl_str_mv |
successive orthogonal projections centers of polytopes linear programming |
topic |
successive orthogonal projections centers of polytopes linear programming |
description |
An iterative method for finding the center of a linear programming polytope is presented. The method assumes that we start at a feasible interior point and each iterate is obtained as a convex combination of the orthogonal projection on the half spaces defined by the linear inequalities plus a special projections on the same half spaces. The algorithm is particularly suitable for implementation on computers with parallel processors. We show some examples in two dimensional space to describe geometrically how the method works. Finally, we present computational results on random generated polytopes and linear programming polytopes from NetLib to compare the centering quality of the center using projections and the analytic center approach. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.22 n.1 2003 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889646686208 |