A weighted projection centering method

Detalhes bibliográficos
Autor(a) principal: Moretti,Antonio Carlos
Data de Publicação: 2003
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100002
Resumo: An iterative method for finding the center of a linear programming polytope is presented. The method assumes that we start at a feasible interior point and each iterate is obtained as a convex combination of the orthogonal projection on the half spaces defined by the linear inequalities plus a special projections on the same half spaces. The algorithm is particularly suitable for implementation on computers with parallel processors. We show some examples in two dimensional space to describe geometrically how the method works. Finally, we present computational results on random generated polytopes and linear programming polytopes from NetLib to compare the centering quality of the center using projections and the analytic center approach.
id SBMAC-2_e987bacd49ca040628cbfa1300baff55
oai_identifier_str oai:scielo:S1807-03022003000100002
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling A weighted projection centering methodsuccessive orthogonal projectionscenters of polytopeslinear programmingAn iterative method for finding the center of a linear programming polytope is presented. The method assumes that we start at a feasible interior point and each iterate is obtained as a convex combination of the orthogonal projection on the half spaces defined by the linear inequalities plus a special projections on the same half spaces. The algorithm is particularly suitable for implementation on computers with parallel processors. We show some examples in two dimensional space to describe geometrically how the method works. Finally, we present computational results on random generated polytopes and linear programming polytopes from NetLib to compare the centering quality of the center using projections and the analytic center approach.Sociedade Brasileira de Matemática Aplicada e Computacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100002Computational & Applied Mathematics v.22 n.1 2003reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessMoretti,Antonio Carloseng2004-07-19T00:00:00Zoai:scielo:S1807-03022003000100002Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-07-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv A weighted projection centering method
title A weighted projection centering method
spellingShingle A weighted projection centering method
Moretti,Antonio Carlos
successive orthogonal projections
centers of polytopes
linear programming
title_short A weighted projection centering method
title_full A weighted projection centering method
title_fullStr A weighted projection centering method
title_full_unstemmed A weighted projection centering method
title_sort A weighted projection centering method
author Moretti,Antonio Carlos
author_facet Moretti,Antonio Carlos
author_role author
dc.contributor.author.fl_str_mv Moretti,Antonio Carlos
dc.subject.por.fl_str_mv successive orthogonal projections
centers of polytopes
linear programming
topic successive orthogonal projections
centers of polytopes
linear programming
description An iterative method for finding the center of a linear programming polytope is presented. The method assumes that we start at a feasible interior point and each iterate is obtained as a convex combination of the orthogonal projection on the half spaces defined by the linear inequalities plus a special projections on the same half spaces. The algorithm is particularly suitable for implementation on computers with parallel processors. We show some examples in two dimensional space to describe geometrically how the method works. Finally, we present computational results on random generated polytopes and linear programming polytopes from NetLib to compare the centering quality of the center using projections and the analytic center approach.
publishDate 2003
dc.date.none.fl_str_mv 2003-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100002
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.22 n.1 2003
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734889646686208