β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)

Detalhes bibliográficos
Autor(a) principal: Winarsih,Sri
Data de Publicação: 2019
Outros Autores: Kosasih,Tomson, Putera,Marvin Anthony, Rahmadhiani,Nayla, Poernomo,Erlien Lindawati, Runtuk,Kresna Septiandy, Oswari,Melissa Valensia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista da Sociedade Brasileira de Medicina Tropical
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822019000100306
Resumo: Abstract INTRODUCTION: Antimicrobial resistance has been reported in the drugs used for the treatment of typhoid fever. The immunomodulatory substance β-glucan can be used as an alternative therapy as it potentiates host immunity. The aims of this study are to observe the effect of Candida albicans cell wall (CCW) extract towards host immunity (TCD8+ and TCD4+ cells in spleen, intestinal sIgA) and its capacity to kill Salmonella in the intestine and liver of typhoid fever mice models. METHODS: Typhoid fever mice models were created by infecting mice with S. Typhimurium orally. Mice were divided into four groups: the Non-Infected, Infected, CCW (infected mice treated with 300 µg CCW extract/mouse once a day), and Ciprofloxacin groups (infected mice treated with 15 mg/kg BW ciprofloxacin twice a day). RESULTS: Secretory IgA (sIgA) concentrations of mice in the CCW group remained unchanged. However, their TCD4+ and TCD8+ cells increased substantially compared to those in the Non-Infected group. In the Ciprofloxacin group, sIgA concentrations increased markedly compared to those in the Non-Infected and CCW groups; TCD4+ and TCD8+ cells also increased significantly compared to those in the Infected Group, but not significant compared to those in the CCW group. Colonization of S. Typhimurium in the intestine and liver decreased significantly in the CCW and Ciprofloxacin groups compared to that in the Infected group, with the lowest reduction being found in the Ciprofloxacin group. CONCLUSIONS The inhibition of S. Typhimurium colonization by CCW is associated with the increase in TCD4+ and TCD8+ cells.
id SBMT-1_c6fd0f225d949b0e17f4e931c398aaee
oai_identifier_str oai:scielo:S0037-86822019000100306
network_acronym_str SBMT-1
network_name_str Revista da Sociedade Brasileira de Medicina Tropical
repository_id_str
spelling β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)β-glucanCandida albicans cell wall extractCD4+CD8+SalmonellasIgAAbstract INTRODUCTION: Antimicrobial resistance has been reported in the drugs used for the treatment of typhoid fever. The immunomodulatory substance β-glucan can be used as an alternative therapy as it potentiates host immunity. The aims of this study are to observe the effect of Candida albicans cell wall (CCW) extract towards host immunity (TCD8+ and TCD4+ cells in spleen, intestinal sIgA) and its capacity to kill Salmonella in the intestine and liver of typhoid fever mice models. METHODS: Typhoid fever mice models were created by infecting mice with S. Typhimurium orally. Mice were divided into four groups: the Non-Infected, Infected, CCW (infected mice treated with 300 µg CCW extract/mouse once a day), and Ciprofloxacin groups (infected mice treated with 15 mg/kg BW ciprofloxacin twice a day). RESULTS: Secretory IgA (sIgA) concentrations of mice in the CCW group remained unchanged. However, their TCD4+ and TCD8+ cells increased substantially compared to those in the Non-Infected group. In the Ciprofloxacin group, sIgA concentrations increased markedly compared to those in the Non-Infected and CCW groups; TCD4+ and TCD8+ cells also increased significantly compared to those in the Infected Group, but not significant compared to those in the CCW group. Colonization of S. Typhimurium in the intestine and liver decreased significantly in the CCW and Ciprofloxacin groups compared to that in the Infected group, with the lowest reduction being found in the Ciprofloxacin group. CONCLUSIONS The inhibition of S. Typhimurium colonization by CCW is associated with the increase in TCD4+ and TCD8+ cells.Sociedade Brasileira de Medicina Tropical - SBMT2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822019000100306Revista da Sociedade Brasileira de Medicina Tropical v.52 2019reponame:Revista da Sociedade Brasileira de Medicina Tropicalinstname:Sociedade Brasileira de Medicina Tropical (SBMT)instacron:SBMT10.1590/0037-8682-0254-2018info:eu-repo/semantics/openAccessWinarsih,SriKosasih,TomsonPutera,Marvin AnthonyRahmadhiani,NaylaPoernomo,Erlien LindawatiRuntuk,Kresna SeptiandyOswari,Melissa Valensiaeng2019-01-24T00:00:00Zoai:scielo:S0037-86822019000100306Revistahttps://www.sbmt.org.br/portal/revista/ONGhttps://old.scielo.br/oai/scielo-oai.php||dalmo@rsbmt.uftm.edu.br|| rsbmt@rsbmt.uftm.edu.br1678-98490037-8682opendoar:2019-01-24T00:00Revista da Sociedade Brasileira de Medicina Tropical - Sociedade Brasileira de Medicina Tropical (SBMT)false
dc.title.none.fl_str_mv β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)
title β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)
spellingShingle β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)
Winarsih,Sri
β-glucan
Candida albicans cell wall extract
CD4+
CD8+
Salmonella
sIgA
title_short β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)
title_full β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)
title_fullStr β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)
title_full_unstemmed β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)
title_sort β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells)
author Winarsih,Sri
author_facet Winarsih,Sri
Kosasih,Tomson
Putera,Marvin Anthony
Rahmadhiani,Nayla
Poernomo,Erlien Lindawati
Runtuk,Kresna Septiandy
Oswari,Melissa Valensia
author_role author
author2 Kosasih,Tomson
Putera,Marvin Anthony
Rahmadhiani,Nayla
Poernomo,Erlien Lindawati
Runtuk,Kresna Septiandy
Oswari,Melissa Valensia
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Winarsih,Sri
Kosasih,Tomson
Putera,Marvin Anthony
Rahmadhiani,Nayla
Poernomo,Erlien Lindawati
Runtuk,Kresna Septiandy
Oswari,Melissa Valensia
dc.subject.por.fl_str_mv β-glucan
Candida albicans cell wall extract
CD4+
CD8+
Salmonella
sIgA
topic β-glucan
Candida albicans cell wall extract
CD4+
CD8+
Salmonella
sIgA
description Abstract INTRODUCTION: Antimicrobial resistance has been reported in the drugs used for the treatment of typhoid fever. The immunomodulatory substance β-glucan can be used as an alternative therapy as it potentiates host immunity. The aims of this study are to observe the effect of Candida albicans cell wall (CCW) extract towards host immunity (TCD8+ and TCD4+ cells in spleen, intestinal sIgA) and its capacity to kill Salmonella in the intestine and liver of typhoid fever mice models. METHODS: Typhoid fever mice models were created by infecting mice with S. Typhimurium orally. Mice were divided into four groups: the Non-Infected, Infected, CCW (infected mice treated with 300 µg CCW extract/mouse once a day), and Ciprofloxacin groups (infected mice treated with 15 mg/kg BW ciprofloxacin twice a day). RESULTS: Secretory IgA (sIgA) concentrations of mice in the CCW group remained unchanged. However, their TCD4+ and TCD8+ cells increased substantially compared to those in the Non-Infected group. In the Ciprofloxacin group, sIgA concentrations increased markedly compared to those in the Non-Infected and CCW groups; TCD4+ and TCD8+ cells also increased significantly compared to those in the Infected Group, but not significant compared to those in the CCW group. Colonization of S. Typhimurium in the intestine and liver decreased significantly in the CCW and Ciprofloxacin groups compared to that in the Infected group, with the lowest reduction being found in the Ciprofloxacin group. CONCLUSIONS The inhibition of S. Typhimurium colonization by CCW is associated with the increase in TCD4+ and TCD8+ cells.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822019000100306
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822019000100306
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0037-8682-0254-2018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Medicina Tropical - SBMT
publisher.none.fl_str_mv Sociedade Brasileira de Medicina Tropical - SBMT
dc.source.none.fl_str_mv Revista da Sociedade Brasileira de Medicina Tropical v.52 2019
reponame:Revista da Sociedade Brasileira de Medicina Tropical
instname:Sociedade Brasileira de Medicina Tropical (SBMT)
instacron:SBMT
instname_str Sociedade Brasileira de Medicina Tropical (SBMT)
instacron_str SBMT
institution SBMT
reponame_str Revista da Sociedade Brasileira de Medicina Tropical
collection Revista da Sociedade Brasileira de Medicina Tropical
repository.name.fl_str_mv Revista da Sociedade Brasileira de Medicina Tropical - Sociedade Brasileira de Medicina Tropical (SBMT)
repository.mail.fl_str_mv ||dalmo@rsbmt.uftm.edu.br|| rsbmt@rsbmt.uftm.edu.br
_version_ 1752122161552687104