A Sustainable Methodology to Extract Bismuth from Secondary Sources
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019001102376 |
Resumo: | Bismuth is a critical metal broadly used in cosmetic, medicine and metallurgy. However, its scarcity in Earth’s crust may impair further applications. An alternative is to recover bismuth from secondary sources. In this work, a methodology to extract bismuth from safety valves of discharged gas cylinders is proposed. Extraction and purification of bismuth were carried out using aqueous two-phase systems (ATPS) prepared with poly(ethylene oxide) polymer or poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer (L35) and electrolytes (NaNO3, NH4NO3, sodium citrate or Na2SO4). The influence of iodide extractant concentration, tie-line length, electrolyte nature and polymer hydrophobicity on the bismuth extraction behavior were evaluated. Bismuth was significantly recovered in the absence of extractant, and its extraction depends on the ATPS composition, macromolecule and electrolyte nature. After three consecutive extractions bismuth was obtained with high purity (94.7%), resulting on a recovery of 38.5 g of bismuth per 1.00 kg of fusible plug, using L35 + NH4NO3 + H2O ATPS, without any extractant. |
id |
SBQ-2_5bcba97c78f02204e3b5b698d05596c8 |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532019001102376 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
A Sustainable Methodology to Extract Bismuth from Secondary Sourcesbismuthurban miningaqueous two-phase systemcritical metaldomestic wastegreen separationBismuth is a critical metal broadly used in cosmetic, medicine and metallurgy. However, its scarcity in Earth’s crust may impair further applications. An alternative is to recover bismuth from secondary sources. In this work, a methodology to extract bismuth from safety valves of discharged gas cylinders is proposed. Extraction and purification of bismuth were carried out using aqueous two-phase systems (ATPS) prepared with poly(ethylene oxide) polymer or poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer (L35) and electrolytes (NaNO3, NH4NO3, sodium citrate or Na2SO4). The influence of iodide extractant concentration, tie-line length, electrolyte nature and polymer hydrophobicity on the bismuth extraction behavior were evaluated. Bismuth was significantly recovered in the absence of extractant, and its extraction depends on the ATPS composition, macromolecule and electrolyte nature. After three consecutive extractions bismuth was obtained with high purity (94.7%), resulting on a recovery of 38.5 g of bismuth per 1.00 kg of fusible plug, using L35 + NH4NO3 + H2O ATPS, without any extractant.Sociedade Brasileira de Química2019-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019001102376Journal of the Brazilian Chemical Society v.30 n.11 2019reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0103-5053.20190147info:eu-repo/semantics/openAccessHespanhol,Maria C.Patrício,Pamela R.Silva,Luis H. M. daVargas,Silvia J. R.Rezende,Teresa C. S.Campos,Raquel A.eng2019-10-18T00:00:00Zoai:scielo:S0103-50532019001102376Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2019-10-18T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
A Sustainable Methodology to Extract Bismuth from Secondary Sources |
title |
A Sustainable Methodology to Extract Bismuth from Secondary Sources |
spellingShingle |
A Sustainable Methodology to Extract Bismuth from Secondary Sources Hespanhol,Maria C. bismuth urban mining aqueous two-phase system critical metal domestic waste green separation |
title_short |
A Sustainable Methodology to Extract Bismuth from Secondary Sources |
title_full |
A Sustainable Methodology to Extract Bismuth from Secondary Sources |
title_fullStr |
A Sustainable Methodology to Extract Bismuth from Secondary Sources |
title_full_unstemmed |
A Sustainable Methodology to Extract Bismuth from Secondary Sources |
title_sort |
A Sustainable Methodology to Extract Bismuth from Secondary Sources |
author |
Hespanhol,Maria C. |
author_facet |
Hespanhol,Maria C. Patrício,Pamela R. Silva,Luis H. M. da Vargas,Silvia J. R. Rezende,Teresa C. S. Campos,Raquel A. |
author_role |
author |
author2 |
Patrício,Pamela R. Silva,Luis H. M. da Vargas,Silvia J. R. Rezende,Teresa C. S. Campos,Raquel A. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Hespanhol,Maria C. Patrício,Pamela R. Silva,Luis H. M. da Vargas,Silvia J. R. Rezende,Teresa C. S. Campos,Raquel A. |
dc.subject.por.fl_str_mv |
bismuth urban mining aqueous two-phase system critical metal domestic waste green separation |
topic |
bismuth urban mining aqueous two-phase system critical metal domestic waste green separation |
description |
Bismuth is a critical metal broadly used in cosmetic, medicine and metallurgy. However, its scarcity in Earth’s crust may impair further applications. An alternative is to recover bismuth from secondary sources. In this work, a methodology to extract bismuth from safety valves of discharged gas cylinders is proposed. Extraction and purification of bismuth were carried out using aqueous two-phase systems (ATPS) prepared with poly(ethylene oxide) polymer or poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer (L35) and electrolytes (NaNO3, NH4NO3, sodium citrate or Na2SO4). The influence of iodide extractant concentration, tie-line length, electrolyte nature and polymer hydrophobicity on the bismuth extraction behavior were evaluated. Bismuth was significantly recovered in the absence of extractant, and its extraction depends on the ATPS composition, macromolecule and electrolyte nature. After three consecutive extractions bismuth was obtained with high purity (94.7%), resulting on a recovery of 38.5 g of bismuth per 1.00 kg of fusible plug, using L35 + NH4NO3 + H2O ATPS, without any extractant. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019001102376 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019001102376 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.21577/0103-5053.20190147 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.30 n.11 2019 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318182209421312 |