Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica

Detalhes bibliográficos
Autor(a) principal: Villas-Bôas, Lúcia Adriana
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/799
Resumo: In the attempt to find new electrolyte materials for Solid Oxide Fuel Cells (SOFC) that works at low temperature, perovskite-type materials have been intensively investigated. These materials have favorable crystal structure for the creation of oxygen vacancies since a variety of elements can be accommodate in the crystal lattice. Among these materials stands out LaAlO3-based perovskite which, when adequately doped, presents considerable ionic conductivity. However, in spite of doped LaAlO3 presents high ionic conductivity, it also presents p-type electronic conductivity under oxidizing conditions, which would limit his use as electrolyte. In this work, powders of pure LaAlO3 and Sr, Ca and Ba-doped individually and, in the case of Sr, also Pr and Mn-co-doped, were prepared by oxide mixture through successive calcinations. Samples, obtained via isostatic pressing, were sintered at 1500 and 1600 °C in air during 6 h of soaking time. Sintered samples were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. Among the different kind of dopants (Ca, Ba and Sr), the Sr-doped sample was that one which had the higher conductivity, both the grain (σgrain = 1,8x10-2 S/cm at 800 °C) and total (σtotal = 9,3x10-3 S/cm at 800 °C) conductivity. Sr- and Pr-doped samples presented higher ionic conductivity than Pr-undoped samples (σtotal = 2,3x10-2 S/cm at 800 °C). This increase was attributed to the highest oxygen vacancy mobility since the presence of Pr+3 in crystal lattice did not introduce additional oxygen vacancies. The Mn co-doping generated samples with high electronic conductivity. It was also observed that all of the samples presented two common features: the total conductivity is controlled by the grain boundary, i. e., the grain boundary is more resistive than the grain, and the microstructures are two-phase and the majority phase is dopant depend.
id SCAR_4b10a17804a449e6f88ad64bf6c77e04
oai_identifier_str oai:repositorio.ufscar.br:ufscar/799
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Villas-Bôas, Lúcia AdrianaSouza, Dulcina Maria Pinatti Ferreira dehttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787362Y3http://lattes.cnpq.br/5196590498448169de38d11f-94f0-428b-ad9e-0124402f008b2016-06-02T19:11:59Z2010-01-202016-06-02T19:11:59Z2009-02-20VILLAS-BÔAS, Lúcia Adriana. Pure and doped lanthanum aluminate: obtaining and electrical characterization. 2009. 147 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.https://repositorio.ufscar.br/handle/ufscar/799In the attempt to find new electrolyte materials for Solid Oxide Fuel Cells (SOFC) that works at low temperature, perovskite-type materials have been intensively investigated. These materials have favorable crystal structure for the creation of oxygen vacancies since a variety of elements can be accommodate in the crystal lattice. Among these materials stands out LaAlO3-based perovskite which, when adequately doped, presents considerable ionic conductivity. However, in spite of doped LaAlO3 presents high ionic conductivity, it also presents p-type electronic conductivity under oxidizing conditions, which would limit his use as electrolyte. In this work, powders of pure LaAlO3 and Sr, Ca and Ba-doped individually and, in the case of Sr, also Pr and Mn-co-doped, were prepared by oxide mixture through successive calcinations. Samples, obtained via isostatic pressing, were sintered at 1500 and 1600 °C in air during 6 h of soaking time. Sintered samples were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. Among the different kind of dopants (Ca, Ba and Sr), the Sr-doped sample was that one which had the higher conductivity, both the grain (σgrain = 1,8x10-2 S/cm at 800 °C) and total (σtotal = 9,3x10-3 S/cm at 800 °C) conductivity. Sr- and Pr-doped samples presented higher ionic conductivity than Pr-undoped samples (σtotal = 2,3x10-2 S/cm at 800 °C). This increase was attributed to the highest oxygen vacancy mobility since the presence of Pr+3 in crystal lattice did not introduce additional oxygen vacancies. The Mn co-doping generated samples with high electronic conductivity. It was also observed that all of the samples presented two common features: the total conductivity is controlled by the grain boundary, i. e., the grain boundary is more resistive than the grain, and the microstructures are two-phase and the majority phase is dopant depend.Na tentativa de encontrar novos materiais de eletrólito para Pilhas a Combustível de Óxido Sólido (PaCOS) que operem em baixas temperaturas, materiais tipo perovskita tem sido extensamente investigados. Estes materiais possuem estrutura cristalina favorável para a formação de vacâncias de oxigênio uma vez que uma variedade de elementos podem ser acomodados na rede cristalina. Dentre estes materiais destaca-se a perovskita LaAlO3 que, quando apropriadamente dopada, apresenta condutividade iônica considerável. Entretanto, apesar de LaAlO3 dopado apresentar elevada condutividade iônica, ele também apresenta condução eletrônica do tipo p sob condições oxidantes, o que limitaria seu uso como eletrólito. Nesta dissertação, pós de LaAlO3 puro, dopado com Sr, Ca e Ba individualmente e, no caso do Sr, também co-dopado Pr e Mn, foram preparados através de mistura de óxidos via calcinações sucessivas. Amostras, obtidas por prensagem isostática, foram sinterizadas a 1500 e 1600 °C com patamar de 6 horas. Amostras sinterizadas foram caracterizadas por difração de raios X, microscopia eletrônica de varredura e espectroscopia de impedância. Entre os diferentes tipos de dopantes (Ca, Ba e Sr), a amostra dopada com Sr foi a que apresentou maior condutividade, tanto do grão (σgrão=1,8x10-2 S/cm a 800 °C) como total (σtotal=9,3x10-3 S/cm a 800 °C). Amostras dopadas com Sr e Pr apresentaram maior condutividade iônica do que amostras sem Pr (σtotal=2,3x10-2 S/cm a 800 °C). Este aumento foi atribuído à maior mobilidade do íon oxigênio visto que a presença de Pr+3 na rede cristalina não introduz vacâncias adicionais de oxigênio. A co-dopagem com Mn gerou amostras com elevada condutividade eletrônica. Foi observado também que todas as amostras apresentaram duas características comuns: a condutividade total é controlada pelo contorno de grão, isto é, o contorno de grão é mais resistivo que o grão, e as microestruturas são bifásicas sendo que a fase majoritária depende do dopante.Universidade Federal de Sao Carlosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarBRCerâmica eletrônicaCélula a combustívelCondutividade elétricaEletrólito sólidoENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICAAluminato de lantânio puro e dopado: obtenção e caracterização elétricaPure and doped lanthanum aluminate: obtaining and electrical characterizationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-170fa011e-1108-4239-97ab-fe5cd4b2d233info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL2745.pdfapplication/pdf6505908https://repositorio.ufscar.br/bitstream/ufscar/799/1/2745.pdfb10681704584d901b3128eb78dd7d173MD51THUMBNAIL2745.pdf.jpg2745.pdf.jpgIM Thumbnailimage/jpeg6103https://repositorio.ufscar.br/bitstream/ufscar/799/2/2745.pdf.jpg51045efd996c17b575163d0b29114c8cMD52ufscar/7992023-09-18 18:30:40.392oai:repositorio.ufscar.br:ufscar/799Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:40Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica
dc.title.alternative.eng.fl_str_mv Pure and doped lanthanum aluminate: obtaining and electrical characterization
title Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica
spellingShingle Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica
Villas-Bôas, Lúcia Adriana
Cerâmica eletrônica
Célula a combustível
Condutividade elétrica
Eletrólito sólido
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
title_short Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica
title_full Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica
title_fullStr Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica
title_full_unstemmed Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica
title_sort Aluminato de lantânio puro e dopado: obtenção e caracterização elétrica
author Villas-Bôas, Lúcia Adriana
author_facet Villas-Bôas, Lúcia Adriana
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5196590498448169
dc.contributor.author.fl_str_mv Villas-Bôas, Lúcia Adriana
dc.contributor.advisor1.fl_str_mv Souza, Dulcina Maria Pinatti Ferreira de
dc.contributor.advisor1Lattes.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787362Y3
dc.contributor.authorID.fl_str_mv de38d11f-94f0-428b-ad9e-0124402f008b
contributor_str_mv Souza, Dulcina Maria Pinatti Ferreira de
dc.subject.por.fl_str_mv Cerâmica eletrônica
Célula a combustível
Condutividade elétrica
Eletrólito sólido
topic Cerâmica eletrônica
Célula a combustível
Condutividade elétrica
Eletrólito sólido
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
description In the attempt to find new electrolyte materials for Solid Oxide Fuel Cells (SOFC) that works at low temperature, perovskite-type materials have been intensively investigated. These materials have favorable crystal structure for the creation of oxygen vacancies since a variety of elements can be accommodate in the crystal lattice. Among these materials stands out LaAlO3-based perovskite which, when adequately doped, presents considerable ionic conductivity. However, in spite of doped LaAlO3 presents high ionic conductivity, it also presents p-type electronic conductivity under oxidizing conditions, which would limit his use as electrolyte. In this work, powders of pure LaAlO3 and Sr, Ca and Ba-doped individually and, in the case of Sr, also Pr and Mn-co-doped, were prepared by oxide mixture through successive calcinations. Samples, obtained via isostatic pressing, were sintered at 1500 and 1600 °C in air during 6 h of soaking time. Sintered samples were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. Among the different kind of dopants (Ca, Ba and Sr), the Sr-doped sample was that one which had the higher conductivity, both the grain (σgrain = 1,8x10-2 S/cm at 800 °C) and total (σtotal = 9,3x10-3 S/cm at 800 °C) conductivity. Sr- and Pr-doped samples presented higher ionic conductivity than Pr-undoped samples (σtotal = 2,3x10-2 S/cm at 800 °C). This increase was attributed to the highest oxygen vacancy mobility since the presence of Pr+3 in crystal lattice did not introduce additional oxygen vacancies. The Mn co-doping generated samples with high electronic conductivity. It was also observed that all of the samples presented two common features: the total conductivity is controlled by the grain boundary, i. e., the grain boundary is more resistive than the grain, and the microstructures are two-phase and the majority phase is dopant depend.
publishDate 2009
dc.date.issued.fl_str_mv 2009-02-20
dc.date.available.fl_str_mv 2010-01-20
2016-06-02T19:11:59Z
dc.date.accessioned.fl_str_mv 2016-06-02T19:11:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VILLAS-BÔAS, Lúcia Adriana. Pure and doped lanthanum aluminate: obtaining and electrical characterization. 2009. 147 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/799
identifier_str_mv VILLAS-BÔAS, Lúcia Adriana. Pure and doped lanthanum aluminate: obtaining and electrical characterization. 2009. 147 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
url https://repositorio.ufscar.br/handle/ufscar/799
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 70fa011e-1108-4239-97ab-fe5cd4b2d233
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/799/1/2745.pdf
https://repositorio.ufscar.br/bitstream/ufscar/799/2/2745.pdf.jpg
bitstream.checksum.fl_str_mv b10681704584d901b3128eb78dd7d173
51045efd996c17b575163d0b29114c8c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136247151362048