Positively curved Killing foliations via deformations

Detalhes bibliográficos
Autor(a) principal: Caramello Junior, Francisco Carlos
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/10024
Resumo: We show that a manifold admitting a Killing foliation with positive transverse curvature and maximal defect fibers over finite quotients of spheres or weighted complex projective spaces. This result is obtained by deforming the foliation into a closed one, while maintaining transverse geometric properties, which allows us to apply results from the Riemannian geometry of orbifolds to the space of leaves. We also show that the basic Euler characteristic is preserved by such deformations, which provides us some topological obstructions for Riemannian foliations.
id SCAR_56ea4ab7dd054a941acf17b03d7f9f6d
oai_identifier_str oai:repositorio.ufscar.br:ufscar/10024
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Caramello Junior, Francisco CarlosTöben, Dirkhttp://lattes.cnpq.br/0022267686144981Hartmann Junior, Luiz Robertohttp://lattes.cnpq.br/4217613854338579http://lattes.cnpq.br/37954127333525920aa9d5e4-f8dd-4878-9a6b-e1a789e0d53c2018-05-15T18:14:09Z2018-05-15T18:14:09Z2018-03-22CARAMELLO JUNIOR, Francisco Carlos. Positively curved Killing foliations via deformations. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10024.https://repositorio.ufscar.br/handle/ufscar/10024We show that a manifold admitting a Killing foliation with positive transverse curvature and maximal defect fibers over finite quotients of spheres or weighted complex projective spaces. This result is obtained by deforming the foliation into a closed one, while maintaining transverse geometric properties, which allows us to apply results from the Riemannian geometry of orbifolds to the space of leaves. We also show that the basic Euler characteristic is preserved by such deformations, which provides us some topological obstructions for Riemannian foliations.Mostramos que uma variedade admitindo uma folheação de Killing com curvatura seccional transversa positiva e defeito máximo se fibra sobre quocientes finitos de esferas ou espaços projetivos complexos com pesos. Este resultado é obtido deformando-se a folheação em uma folheação fechada enquanto preservamos propriedades geométricas transversas, o que nos permite aplicar resultados da geometria Riemanniana de orbifolds ao espaço das folhas. Mostramos também que a característica de Euler básica é preservada por tais deformações, o que nos provê algumas obstruções topológicas para folheações Riemannianas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarRiemannianaFolheaçõesFolheaçãoCurvaturaPositivaDeformaçõesKillingRiemannianFoliationsPositiveCurvatureDeformationsCIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TEORIA DAS FOLHEACOESPositively curved Killing foliations via deformationsFolheações de Killing com curvatura positiva via deformaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60060076386863-a514-452e-9d7b-de3635ab619ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALthesis_Caramello.pdfthesis_Caramello.pdfTese completaapplication/pdf1267947https://repositorio.ufscar.br/bitstream/ufscar/10024/1/thesis_Caramello.pdfda85a4137fea808d0fc9eab2be8b593dMD51carta_comprovante.pdfcarta_comprovante.pdfCarta comprovanteapplication/pdf470109https://repositorio.ufscar.br/bitstream/ufscar/10024/2/carta_comprovante.pdf1be987e76311c886d87730bb508dc759MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/10024/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTthesis_Caramello.pdf.txtthesis_Caramello.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/10024/4/thesis_Caramello.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD54carta_comprovante.pdf.txtcarta_comprovante.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/10024/5/carta_comprovante.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD55THUMBNAILthesis_Caramello.pdf.jpgthesis_Caramello.pdf.jpgIM Thumbnailimage/jpeg5853https://repositorio.ufscar.br/bitstream/ufscar/10024/6/thesis_Caramello.pdf.jpg65abcd4bf4ae8bc408f8b15d4b931abfMD56carta_comprovante.pdf.jpgcarta_comprovante.pdf.jpgIM Thumbnailimage/jpeg12813https://repositorio.ufscar.br/bitstream/ufscar/10024/7/carta_comprovante.pdf.jpg34cf0be9bfb7e3665c98d16f129af27cMD57ufscar/100242023-09-18 18:31:42.903oai:repositorio.ufscar.br:ufscar/10024TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:42Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Positively curved Killing foliations via deformations
dc.title.alternative.por.fl_str_mv Folheações de Killing com curvatura positiva via deformações
title Positively curved Killing foliations via deformations
spellingShingle Positively curved Killing foliations via deformations
Caramello Junior, Francisco Carlos
Riemanniana
Folheações
Folheação
Curvatura
Positiva
Deformações
Killing
Riemannian
Foliations
Positive
Curvature
Deformations
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TEORIA DAS FOLHEACOES
title_short Positively curved Killing foliations via deformations
title_full Positively curved Killing foliations via deformations
title_fullStr Positively curved Killing foliations via deformations
title_full_unstemmed Positively curved Killing foliations via deformations
title_sort Positively curved Killing foliations via deformations
author Caramello Junior, Francisco Carlos
author_facet Caramello Junior, Francisco Carlos
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3795412733352592
dc.contributor.author.fl_str_mv Caramello Junior, Francisco Carlos
dc.contributor.advisor1.fl_str_mv Töben, Dirk
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0022267686144981
dc.contributor.advisor-co1.fl_str_mv Hartmann Junior, Luiz Roberto
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4217613854338579
dc.contributor.authorID.fl_str_mv 0aa9d5e4-f8dd-4878-9a6b-e1a789e0d53c
contributor_str_mv Töben, Dirk
Hartmann Junior, Luiz Roberto
dc.subject.por.fl_str_mv Riemanniana
Folheações
Folheação
Curvatura
Positiva
Deformações
topic Riemanniana
Folheações
Folheação
Curvatura
Positiva
Deformações
Killing
Riemannian
Foliations
Positive
Curvature
Deformations
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TEORIA DAS FOLHEACOES
dc.subject.eng.fl_str_mv Killing
Riemannian
Foliations
Positive
Curvature
Deformations
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TEORIA DAS FOLHEACOES
description We show that a manifold admitting a Killing foliation with positive transverse curvature and maximal defect fibers over finite quotients of spheres or weighted complex projective spaces. This result is obtained by deforming the foliation into a closed one, while maintaining transverse geometric properties, which allows us to apply results from the Riemannian geometry of orbifolds to the space of leaves. We also show that the basic Euler characteristic is preserved by such deformations, which provides us some topological obstructions for Riemannian foliations.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-05-15T18:14:09Z
dc.date.available.fl_str_mv 2018-05-15T18:14:09Z
dc.date.issued.fl_str_mv 2018-03-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARAMELLO JUNIOR, Francisco Carlos. Positively curved Killing foliations via deformations. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10024.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/10024
identifier_str_mv CARAMELLO JUNIOR, Francisco Carlos. Positively curved Killing foliations via deformations. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10024.
url https://repositorio.ufscar.br/handle/ufscar/10024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 76386863-a514-452e-9d7b-de3635ab619a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/10024/1/thesis_Caramello.pdf
https://repositorio.ufscar.br/bitstream/ufscar/10024/2/carta_comprovante.pdf
https://repositorio.ufscar.br/bitstream/ufscar/10024/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/10024/4/thesis_Caramello.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/10024/5/carta_comprovante.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/10024/6/thesis_Caramello.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/10024/7/carta_comprovante.pdf.jpg
bitstream.checksum.fl_str_mv da85a4137fea808d0fc9eab2be8b593d
1be987e76311c886d87730bb508dc759
ae0398b6f8b235e40ad82cba6c50031d
d41d8cd98f00b204e9800998ecf8427e
68b329da9893e34099c7d8ad5cb9c940
65abcd4bf4ae8bc408f8b15d4b931abf
34cf0be9bfb7e3665c98d16f129af27c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715590585516032