Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos

Detalhes bibliográficos
Autor(a) principal: Souza, Osmar do Nascimento
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/16601
Resumo: We started this work by reviewing an application of periodic quantum graph theory to model monolayer hexagonal materials with δ_a and δ_b parameters associated with the different types of atoms located in their vertices. We verified that materials of this nature have gaps in their spectral bands and express the size of this opening according to these parameters. In the Chapters 2 and 3, extend this modeling to equal bilayers, stacked in type AA and AA′, and in the Chapters 4, we studied heterostructures with two mixed layers and the “sandwich” hexagonal boron graphene-nitride: a single graphene sheet between two layers of hBN, and a single hBN sheet between two layers of graphene. In each of these configurations, we use the Schrödinger operator with its respective boundary conditions and we introduced a weak t_0 interaction parameter between the connections of different layers. We analyzed initially the dispersion relationship obtained in these models regarding the existence of conical or parabolic touches and confirmed, in rigorous models, known results in the physical literature, namely: hBN bilayers do not have Dirac cones, but, in AA stacking we identified the presence of parabolic touches. In the case of mixed bilayers, our study allows us to conclude that the inclusion of an hBN layer over a graphene layer can induce a gap in the graphene sheet and we express the width of this gap according to the parameters t_0 e δ_a. In the study of “sandwiches”, hBN-graphene-hBN and graphene-hBN-graphene, for certain particular values of the parameters, we found that the inclusion of a single graphene sheet between two sheets of hBN does not eliminate the gap of the hBN, but induces a reduction in the width of the spectral gap in an order of magnitude; by on the other hand, in the case graphene-hBN-graphene, the graphene cone at the origin prevails in this sandwich, but it also caused gaps in the other Dirac cones of the graphene. Such results can be justified by the fact that, in these heterostructures, carbon atoms have interacted with other inequivalent hBN, nitrogen, and boron atoms, causing a reduction or increase of the gaps. Finally, in the last chapter, we consider hexagonal quantum graphs and we adapt our proposal to include a magnetic field in the hBN sheet. We demonstrate that if the magnetic flux is constant in the hexagonal network and is a rational multiple of 2π, then there will be values of thisflux such that, for certain boundary conditions at the vertices (modeling the hBN), the conical touches in the operator scattering relation will cease to exist and we guarantee the existence of gaps.
id SCAR_71990f59a1fb496b95a17d9c60c734b6
oai_identifier_str oai:repositorio.ufscar.br:ufscar/16601
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Souza, Osmar do NascimentoOliveira, César Rogério dehttp://lattes.cnpq.br/5485204156806697http://lattes.cnpq.br/983964973357063254026b8c-6671-4098-9086-5154c35876272022-09-12T11:44:15Z2022-09-12T11:44:15Z2022-08-24SOUZA, Osmar do Nascimento. Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos. 2022. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16601.https://repositorio.ufscar.br/handle/ufscar/16601We started this work by reviewing an application of periodic quantum graph theory to model monolayer hexagonal materials with δ_a and δ_b parameters associated with the different types of atoms located in their vertices. We verified that materials of this nature have gaps in their spectral bands and express the size of this opening according to these parameters. In the Chapters 2 and 3, extend this modeling to equal bilayers, stacked in type AA and AA′, and in the Chapters 4, we studied heterostructures with two mixed layers and the “sandwich” hexagonal boron graphene-nitride: a single graphene sheet between two layers of hBN, and a single hBN sheet between two layers of graphene. In each of these configurations, we use the Schrödinger operator with its respective boundary conditions and we introduced a weak t_0 interaction parameter between the connections of different layers. We analyzed initially the dispersion relationship obtained in these models regarding the existence of conical or parabolic touches and confirmed, in rigorous models, known results in the physical literature, namely: hBN bilayers do not have Dirac cones, but, in AA stacking we identified the presence of parabolic touches. In the case of mixed bilayers, our study allows us to conclude that the inclusion of an hBN layer over a graphene layer can induce a gap in the graphene sheet and we express the width of this gap according to the parameters t_0 e δ_a. In the study of “sandwiches”, hBN-graphene-hBN and graphene-hBN-graphene, for certain particular values of the parameters, we found that the inclusion of a single graphene sheet between two sheets of hBN does not eliminate the gap of the hBN, but induces a reduction in the width of the spectral gap in an order of magnitude; by on the other hand, in the case graphene-hBN-graphene, the graphene cone at the origin prevails in this sandwich, but it also caused gaps in the other Dirac cones of the graphene. Such results can be justified by the fact that, in these heterostructures, carbon atoms have interacted with other inequivalent hBN, nitrogen, and boron atoms, causing a reduction or increase of the gaps. Finally, in the last chapter, we consider hexagonal quantum graphs and we adapt our proposal to include a magnetic field in the hBN sheet. We demonstrate that if the magnetic flux is constant in the hexagonal network and is a rational multiple of 2π, then there will be values of thisflux such that, for certain boundary conditions at the vertices (modeling the hBN), the conical touches in the operator scattering relation will cease to exist and we guarantee the existence of gaps.Iniciamos este trabalho revisando uma aplicação da teoria de grafos quânticos periódicos para modelar monocamada de materiais hexagonais com parâmetros δ_a e δ_b associados aos tipos de átomos distintos situados em seus vértices. Verificamos que materiais dessa natureza possuem lacunas em suas bandas espectrais e expressamos o tamanho dessa abertura em função desses parâmetros. Nos Capítulos 2 e 3, estendemos essa modelagem para bicamadas iguais, empilhadas no tipo AA e AA′, e no Capítulo 4, estudamos heteroestruturas com duas camadas mistas e os “sanduíche” grafeno-nitreto de boro hexagonal: folha de grafeno entre hBN, e hBN entre grafenos. Em cada uma dessas configurações, usamos o operador de Schrödinger com suas respectivas condições de contorno e introduzimos um parâmetro de interação fraca t_0 entre as conexões de diferentes camadas. Analisamos analiticamente a relação de dispersão obtida nesses modelos quanto à existência de toques cônicos ou parabólicos e confirmamos, em modelos rigorosos, resultados conhecidos na literatura física, a saber: bicamadas de hBN não possuem cones de Dirac, porém no empilhamento AA identificamos a presença de toques parabólicos. No caso de bicamadas mistas, nosso estudo permite concluir que a inclusão de uma camada de hBN sobre uma de grafeno pode induzir um gap na folha de grafeno e expressamos a largura desse gap em função dos parâmetros t_0, δ_a. No estudo dos “sanduíches”, hBN-grafeno-hBN e grafeno-hBN-grafeno, para certos valores particulares dos parâmetros, verificamos que a inclusão de uma folha de grafeno entre duas de hBN não elimina o gap do hBN, mas induz uma redução na largura da lacuna espectral em uma ordem de grandeza; por outro lado, no caso grafeno-hBN-grafeno, o cone do grafeno na origem prevalece neste sanduíche, porém também provocou lacunas nos outros cones de Dirac do grafeno. Tais resultados podem ser justificados pelo fato de que, nessas heteroestruturas, os átomos de carbono terem interagido com outros átomos inequivalentes de hBN, nitrogênio e boro, provocando redução ou aumento das lacunas. Por fim, no último capítulo, consideramos grafos quânticos hexagonais e adaptamos nossa proposta para incluir um campo magnético na folha de hBN. Demonstramos que se o fluxo magnético for constante na rede hexagonal e for múltiplo racional de 2π, então existirão valores desse fluxo de forma que, para certas condições de contorno nos vértices (modelando o hBN), os toques cônicos na relação de dispersão do operador deixarão de existir e garantimos a existência de lacunas.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessGrafos quânticosHeteroestruturasGrafeno - Nitreto de BoroOperador de SchrodingerCampo magnéticoCones de DiracQuantum graphsGraphene - Boron nitrideHeterostructuresSchrodinger operatorMagnetic fieldDirac conesCIENCIAS EXATAS E DA TERRA::MATEMATICACamadas de heteroestruturas hexagonais planas modeladas por grafos quânticosLayers of planar hexagonal heterostructures modeled by quantum graphsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600bcffdcda-5ce8-4296-ae3a-1650ea990cfdreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/16601/6/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD56ORIGINALTese_com_folha_aprovacao.pdfTese_com_folha_aprovacao.pdfTese - Versão finalapplication/pdf5202242https://repositorio.ufscar.br/bitstream/ufscar/16601/4/Tese_com_folha_aprovacao.pdf113d865d21da2cb714af9daef3d64399MD54Carta_comprovante.pdfCarta_comprovante.pdfCarta comprovanteapplication/pdf285517https://repositorio.ufscar.br/bitstream/ufscar/16601/5/Carta_comprovante.pdf5fca385e0d9b69c0f60db004d09184a7MD55TEXTTese_com_folha_aprovacao.pdf.txtTese_com_folha_aprovacao.pdf.txtExtracted texttext/plain141838https://repositorio.ufscar.br/bitstream/ufscar/16601/7/Tese_com_folha_aprovacao.pdf.txt5f2de556a2163d1cff5a1cb94999aff4MD57Carta_comprovante.pdf.txtCarta_comprovante.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/16601/9/Carta_comprovante.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD59THUMBNAILTese_com_folha_aprovacao.pdf.jpgTese_com_folha_aprovacao.pdf.jpgIM Thumbnailimage/jpeg7570https://repositorio.ufscar.br/bitstream/ufscar/16601/8/Tese_com_folha_aprovacao.pdf.jpg1fdb02179df59dfdb9c1e6297f53a344MD58Carta_comprovante.pdf.jpgCarta_comprovante.pdf.jpgIM Thumbnailimage/jpeg11186https://repositorio.ufscar.br/bitstream/ufscar/16601/10/Carta_comprovante.pdf.jpg79c02107cc63b8cbffc709daecc17e66MD510ufscar/166012023-09-18 18:32:19.354oai:repositorio.ufscar.br:ufscar/16601Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:19Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos
dc.title.alternative.eng.fl_str_mv Layers of planar hexagonal heterostructures modeled by quantum graphs
title Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos
spellingShingle Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos
Souza, Osmar do Nascimento
Grafos quânticos
Heteroestruturas
Grafeno - Nitreto de Boro
Operador de Schrodinger
Campo magnético
Cones de Dirac
Quantum graphs
Graphene - Boron nitride
Heterostructures
Schrodinger operator
Magnetic field
Dirac cones
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos
title_full Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos
title_fullStr Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos
title_full_unstemmed Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos
title_sort Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos
author Souza, Osmar do Nascimento
author_facet Souza, Osmar do Nascimento
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/9839649733570632
dc.contributor.author.fl_str_mv Souza, Osmar do Nascimento
dc.contributor.advisor1.fl_str_mv Oliveira, César Rogério de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5485204156806697
dc.contributor.authorID.fl_str_mv 54026b8c-6671-4098-9086-5154c3587627
contributor_str_mv Oliveira, César Rogério de
dc.subject.por.fl_str_mv Grafos quânticos
Heteroestruturas
Grafeno - Nitreto de Boro
Operador de Schrodinger
Campo magnético
Cones de Dirac
topic Grafos quânticos
Heteroestruturas
Grafeno - Nitreto de Boro
Operador de Schrodinger
Campo magnético
Cones de Dirac
Quantum graphs
Graphene - Boron nitride
Heterostructures
Schrodinger operator
Magnetic field
Dirac cones
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Quantum graphs
Graphene - Boron nitride
Heterostructures
Schrodinger operator
Magnetic field
Dirac cones
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description We started this work by reviewing an application of periodic quantum graph theory to model monolayer hexagonal materials with δ_a and δ_b parameters associated with the different types of atoms located in their vertices. We verified that materials of this nature have gaps in their spectral bands and express the size of this opening according to these parameters. In the Chapters 2 and 3, extend this modeling to equal bilayers, stacked in type AA and AA′, and in the Chapters 4, we studied heterostructures with two mixed layers and the “sandwich” hexagonal boron graphene-nitride: a single graphene sheet between two layers of hBN, and a single hBN sheet between two layers of graphene. In each of these configurations, we use the Schrödinger operator with its respective boundary conditions and we introduced a weak t_0 interaction parameter between the connections of different layers. We analyzed initially the dispersion relationship obtained in these models regarding the existence of conical or parabolic touches and confirmed, in rigorous models, known results in the physical literature, namely: hBN bilayers do not have Dirac cones, but, in AA stacking we identified the presence of parabolic touches. In the case of mixed bilayers, our study allows us to conclude that the inclusion of an hBN layer over a graphene layer can induce a gap in the graphene sheet and we express the width of this gap according to the parameters t_0 e δ_a. In the study of “sandwiches”, hBN-graphene-hBN and graphene-hBN-graphene, for certain particular values of the parameters, we found that the inclusion of a single graphene sheet between two sheets of hBN does not eliminate the gap of the hBN, but induces a reduction in the width of the spectral gap in an order of magnitude; by on the other hand, in the case graphene-hBN-graphene, the graphene cone at the origin prevails in this sandwich, but it also caused gaps in the other Dirac cones of the graphene. Such results can be justified by the fact that, in these heterostructures, carbon atoms have interacted with other inequivalent hBN, nitrogen, and boron atoms, causing a reduction or increase of the gaps. Finally, in the last chapter, we consider hexagonal quantum graphs and we adapt our proposal to include a magnetic field in the hBN sheet. We demonstrate that if the magnetic flux is constant in the hexagonal network and is a rational multiple of 2π, then there will be values of thisflux such that, for certain boundary conditions at the vertices (modeling the hBN), the conical touches in the operator scattering relation will cease to exist and we guarantee the existence of gaps.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-09-12T11:44:15Z
dc.date.available.fl_str_mv 2022-09-12T11:44:15Z
dc.date.issued.fl_str_mv 2022-08-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, Osmar do Nascimento. Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos. 2022. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16601.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/16601
identifier_str_mv SOUZA, Osmar do Nascimento. Camadas de heteroestruturas hexagonais planas modeladas por grafos quânticos. 2022. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16601.
url https://repositorio.ufscar.br/handle/ufscar/16601
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv bcffdcda-5ce8-4296-ae3a-1650ea990cfd
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/16601/6/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/16601/4/Tese_com_folha_aprovacao.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16601/5/Carta_comprovante.pdf
https://repositorio.ufscar.br/bitstream/ufscar/16601/7/Tese_com_folha_aprovacao.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16601/9/Carta_comprovante.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/16601/8/Tese_com_folha_aprovacao.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/16601/10/Carta_comprovante.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
113d865d21da2cb714af9daef3d64399
5fca385e0d9b69c0f60db004d09184a7
5f2de556a2163d1cff5a1cb94999aff4
68b329da9893e34099c7d8ad5cb9c940
1fdb02179df59dfdb9c1e6297f53a344
79c02107cc63b8cbffc709daecc17e66
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136410910621696