Modelos preditivos comportamentais para otimização de despacho de táxis

Detalhes bibliográficos
Autor(a) principal: Otsuka, Breno José Bueno
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/11511
Resumo: The popularization of smartphones has given rise to several online taxi-booking applications as a more efficient way to call for a taxi. These applications mediate communication between passengers and taxi drivers, reducing the waiting time of passengers and increasing the reliability of the service. This intermediation consists of the Taxi-Passenger Matching Problem, whose goal is to select the best taxi driver for each passenger, and to solve this problem a taxi dispatch method is used. In this context, the challenge arises to adapt this method to the interests and needs of users. Thus, in this work, a multi-passenger approach was proposed that used users' prediction of behavior with the goal of maximizing the rate of successful assignments. For this, two predictive models were trained using Supervised Machine Learning methods (Logistic Regression and Gradient Boosted Decision Trees), one to estimate the probability of a taxi driver accepting the offer of a request and another to estimate the probability of a request being answered by a taxi driver. In addition, two objective functions, one linear and one non-linear, were implemented to evaluate offer distributions. A heuristic was used for each of the functions, and for the linear it was guaranteed the optimal solution and for the non-linear one not. We also implemented two selection criteria, one based on cancellation of requests by passengers and another by waiting time of users. In numerical simulations with data from the capital of São Paulo made available by Easy Taxi, the proposed taxi dispatching method was tested. The results indicated that the predictive model of acceptance was superior to that of attendance with the objective function non-linear and inferior to linear, in addition it was verified that the selection criterion based on cancellation was slightly superior to the one based on waiting time. The best attendance rate was 74.76% with the predictive model of acceptance with the nonlinear function and the criterion of selection by cancellation. Finally, it was tested the repetition of requests not offered or not accepted, obtaining 76.59% of attendance.
id SCAR_974fee6bcab1a15ca443a56995e6b790
oai_identifier_str oai:repositorio.ufscar.br:ufscar/11511
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Otsuka, Breno José BuenoVivaldini, Kelen Cristiane Teixeirahttp://lattes.cnpq.br/5245409138233148http://lattes.cnpq.br/8040361956015383e3e1e61e-faf0-4276-8d3e-1abe1a203dd42019-07-17T12:55:18Z2019-07-17T12:55:18Z2019-04-12OTSUKA, Breno José Bueno. Modelos preditivos comportamentais para otimização de despacho de táxis. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11511.https://repositorio.ufscar.br/handle/ufscar/11511The popularization of smartphones has given rise to several online taxi-booking applications as a more efficient way to call for a taxi. These applications mediate communication between passengers and taxi drivers, reducing the waiting time of passengers and increasing the reliability of the service. This intermediation consists of the Taxi-Passenger Matching Problem, whose goal is to select the best taxi driver for each passenger, and to solve this problem a taxi dispatch method is used. In this context, the challenge arises to adapt this method to the interests and needs of users. Thus, in this work, a multi-passenger approach was proposed that used users' prediction of behavior with the goal of maximizing the rate of successful assignments. For this, two predictive models were trained using Supervised Machine Learning methods (Logistic Regression and Gradient Boosted Decision Trees), one to estimate the probability of a taxi driver accepting the offer of a request and another to estimate the probability of a request being answered by a taxi driver. In addition, two objective functions, one linear and one non-linear, were implemented to evaluate offer distributions. A heuristic was used for each of the functions, and for the linear it was guaranteed the optimal solution and for the non-linear one not. We also implemented two selection criteria, one based on cancellation of requests by passengers and another by waiting time of users. In numerical simulations with data from the capital of São Paulo made available by Easy Taxi, the proposed taxi dispatching method was tested. The results indicated that the predictive model of acceptance was superior to that of attendance with the objective function non-linear and inferior to linear, in addition it was verified that the selection criterion based on cancellation was slightly superior to the one based on waiting time. The best attendance rate was 74.76% with the predictive model of acceptance with the nonlinear function and the criterion of selection by cancellation. Finally, it was tested the repetition of requests not offered or not accepted, obtaining 76.59% of attendance.Com a popularização dos aparelhos smartphones, diversos aplicativos de chamada de táxi online surgiram como uma forma mais eficiente de requisitar um táxi. Estes aplicativos intermedeiam a comunicação entre os passageiros e os taxistas, reduzindo o tempo de espera dos passageiros e aumentando a confiabilidade do serviço. Esta intermediação consiste no Problema de Atribuição Táxi-Passageiro, cuja meta é selecionar o melhor taxista para cada passageiro, e para resolver este problema utiliza-se um método de despacho de táxis. Neste contexto, surge o desafio de adequar este método aos interesses e às necessidades dos usuários. Assim, neste trabalho, propôs-se uma abordagem para múltiplos passageiros utilizando a predição de comportamento dos usuários com a meta de maximizar a taxa de atribuições bem sucedidas. Para tanto, treinou-se dois modelos preditivos utilizando métodos de Aprendizagem de Máquina Supervisionada (Regressão Logística e Árvores de Decisão Impulsionadas por Gradiente), um para estimar a probabilidade de um taxista aceitar a oferta de uma requisição e outro para estimar a probabilidade de uma requisição ser atendida por um taxista. Além disso, implementou-se duas funções objetivos, uma linear e outra não-linear, para avaliar as distribuições de ofertas. Uma heurística foi utilizada para cada uma das funções, sendo que para a linear garantiu-se a solução ótima e para a não-linear não. Também implementou-se dois critérios de seleção, um baseado em cancelamento de requisições por passageiros e outro por tempo de espera dos usuários. Em simulações numéricas com dados da capital de São Paulo disponibilizados pela Easy Taxi, testou-se o método de despacho de táxis proposto. Os resultados indicaram que o modelo preditivo de aceite foi superior ao de atendimento com a função objetivo não-linear e inferior com a linear, além disso constatou-se que o critério de seleção baseado em cancelamento foi levemente superior ao baseado em tempo de espera. A melhor taxa de atendimento foi de 74,76% com o modelo preditivo de aceite com a função não-linear e o critério de seleção por cancelamento. Por fim, testou-se a repetição de requisições não ofertadas ou não aceitas, obtendo 76,59% de atendimento.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 131907/2017-4porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarSistema de transporte inteligenteProblema de atribuição táxi-passageiroDespacho de táxiAprendizagem de máquinaOtimização combinatóriaIntelligent transportation systemTaxi-passenger matching problemTaxi dispatchingMachine learningCombinatorial optimizationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOModelos preditivos comportamentais para otimização de despacho de táxisPredictive behavioral models for taxi dispatch optimizationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline6006000fa4df64-b859-4a9f-8bce-831f79781811info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação-BrenoOtsuka.pdfDissertação-BrenoOtsuka.pdfapplication/pdf481987https://repositorio.ufscar.br/bitstream/ufscar/11511/1/Disserta%c3%a7%c3%a3o-BrenoOtsuka.pdf531f8b15cbe7c98dfc585eab523451ddMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/11511/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTDissertação-BrenoOtsuka.pdf.txtDissertação-BrenoOtsuka.pdf.txtExtracted texttext/plain129994https://repositorio.ufscar.br/bitstream/ufscar/11511/4/Disserta%c3%a7%c3%a3o-BrenoOtsuka.pdf.txt2a430d465bac3ef7428d37fa012c0176MD54THUMBNAILDissertação-BrenoOtsuka.pdf.jpgDissertação-BrenoOtsuka.pdf.jpgIM Thumbnailimage/jpeg8794https://repositorio.ufscar.br/bitstream/ufscar/11511/5/Disserta%c3%a7%c3%a3o-BrenoOtsuka.pdf.jpg68e173054405f26dfae50a7c8181b696MD55ufscar/115112023-09-18 18:31:12.564oai:repositorio.ufscar.br:ufscar/11511TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:12Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Modelos preditivos comportamentais para otimização de despacho de táxis
dc.title.alternative.eng.fl_str_mv Predictive behavioral models for taxi dispatch optimization
title Modelos preditivos comportamentais para otimização de despacho de táxis
spellingShingle Modelos preditivos comportamentais para otimização de despacho de táxis
Otsuka, Breno José Bueno
Sistema de transporte inteligente
Problema de atribuição táxi-passageiro
Despacho de táxi
Aprendizagem de máquina
Otimização combinatória
Intelligent transportation system
Taxi-passenger matching problem
Taxi dispatching
Machine learning
Combinatorial optimization
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Modelos preditivos comportamentais para otimização de despacho de táxis
title_full Modelos preditivos comportamentais para otimização de despacho de táxis
title_fullStr Modelos preditivos comportamentais para otimização de despacho de táxis
title_full_unstemmed Modelos preditivos comportamentais para otimização de despacho de táxis
title_sort Modelos preditivos comportamentais para otimização de despacho de táxis
author Otsuka, Breno José Bueno
author_facet Otsuka, Breno José Bueno
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8040361956015383
dc.contributor.author.fl_str_mv Otsuka, Breno José Bueno
dc.contributor.advisor1.fl_str_mv Vivaldini, Kelen Cristiane Teixeira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5245409138233148
dc.contributor.authorID.fl_str_mv e3e1e61e-faf0-4276-8d3e-1abe1a203dd4
contributor_str_mv Vivaldini, Kelen Cristiane Teixeira
dc.subject.por.fl_str_mv Sistema de transporte inteligente
Problema de atribuição táxi-passageiro
Despacho de táxi
Aprendizagem de máquina
Otimização combinatória
topic Sistema de transporte inteligente
Problema de atribuição táxi-passageiro
Despacho de táxi
Aprendizagem de máquina
Otimização combinatória
Intelligent transportation system
Taxi-passenger matching problem
Taxi dispatching
Machine learning
Combinatorial optimization
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
dc.subject.eng.fl_str_mv Intelligent transportation system
Taxi-passenger matching problem
Taxi dispatching
Machine learning
Combinatorial optimization
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description The popularization of smartphones has given rise to several online taxi-booking applications as a more efficient way to call for a taxi. These applications mediate communication between passengers and taxi drivers, reducing the waiting time of passengers and increasing the reliability of the service. This intermediation consists of the Taxi-Passenger Matching Problem, whose goal is to select the best taxi driver for each passenger, and to solve this problem a taxi dispatch method is used. In this context, the challenge arises to adapt this method to the interests and needs of users. Thus, in this work, a multi-passenger approach was proposed that used users' prediction of behavior with the goal of maximizing the rate of successful assignments. For this, two predictive models were trained using Supervised Machine Learning methods (Logistic Regression and Gradient Boosted Decision Trees), one to estimate the probability of a taxi driver accepting the offer of a request and another to estimate the probability of a request being answered by a taxi driver. In addition, two objective functions, one linear and one non-linear, were implemented to evaluate offer distributions. A heuristic was used for each of the functions, and for the linear it was guaranteed the optimal solution and for the non-linear one not. We also implemented two selection criteria, one based on cancellation of requests by passengers and another by waiting time of users. In numerical simulations with data from the capital of São Paulo made available by Easy Taxi, the proposed taxi dispatching method was tested. The results indicated that the predictive model of acceptance was superior to that of attendance with the objective function non-linear and inferior to linear, in addition it was verified that the selection criterion based on cancellation was slightly superior to the one based on waiting time. The best attendance rate was 74.76% with the predictive model of acceptance with the nonlinear function and the criterion of selection by cancellation. Finally, it was tested the repetition of requests not offered or not accepted, obtaining 76.59% of attendance.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-07-17T12:55:18Z
dc.date.available.fl_str_mv 2019-07-17T12:55:18Z
dc.date.issued.fl_str_mv 2019-04-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OTSUKA, Breno José Bueno. Modelos preditivos comportamentais para otimização de despacho de táxis. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11511.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/11511
identifier_str_mv OTSUKA, Breno José Bueno. Modelos preditivos comportamentais para otimização de despacho de táxis. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11511.
url https://repositorio.ufscar.br/handle/ufscar/11511
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 0fa4df64-b859-4a9f-8bce-831f79781811
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/11511/1/Disserta%c3%a7%c3%a3o-BrenoOtsuka.pdf
https://repositorio.ufscar.br/bitstream/ufscar/11511/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/11511/4/Disserta%c3%a7%c3%a3o-BrenoOtsuka.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/11511/5/Disserta%c3%a7%c3%a3o-BrenoOtsuka.pdf.jpg
bitstream.checksum.fl_str_mv 531f8b15cbe7c98dfc585eab523451dd
ae0398b6f8b235e40ad82cba6c50031d
2a430d465bac3ef7428d37fa012c0176
68e173054405f26dfae50a7c8181b696
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715605018116096