Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada

Detalhes bibliográficos
Autor(a) principal: Milani, Eder Angelo
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/7943
Resumo: From the generalized normal distribution and concepts of the generalized autoregressive moving averages models we introduce the generalized normal-ARMA model as an alternative way to model time series exhibiting symmetry and tails that may be lighter or heavier when compared the normal distribution. We present application for proposed model using three time series in the hydrology, economy and publics policy areas. The proposed model is presented as good alternative when compared to ARMA model with normal distribution. We extended this model the case of the asymmetric time series. In this case we used the Box-Cox transformation, denoted by Box-Cox generalized normal ARMA. The particular case, when we use the logarithmic transformation is called generalized log-normal ARMA. We adjusted the models with transformation to the series on monthly average affluent streamflow of the Furnas and Sobradinho hydroelectric plants. We obtain the prediction values for the model with transformation, that are better when compared with the model without transformation. To treat time series that exhibit periodic in the correlation function we defined three extensions for periodic autoregressive model, called generalized normal periodic autoregressive model, generalized log-normal periodic autoregressive model and Box-Cox generalized normal periodic autoregressive model. We can observed that the series on monthly average affluent streamflow of the Furnas and Sobradinho hydroelectric plants have periodic correlation. We present two applications of periodic models from these series. In the models, we note that is not necessary the use of generalized normal distribution in every months, just in some the generalized normal distribution presented better results than the normal distribution. Finally, we define the generalized normal zero inflated distribution and the generalized normal zero inflated ARMA model for time series. Adopting the model for series that have zero inflation and the maximum likelihood method for estimation of parameters, we analyze the serie of the amount of rainfall in the city of São Carlos.
id SCAR_a4c52d8aaa3782f3d67f094c60a8ea51
oai_identifier_str oai:repositorio.ufscar.br:ufscar/7943
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Milani, Eder AngeloAndrade Filho, Marinho Gomes dehttp://lattes.cnpq.br/4126245980112687http://lattes.cnpq.br/1420630122459706a0716210-408e-4a1d-a4e8-55a0da76bc832016-10-20T13:52:00Z2016-10-20T13:52:00Z2016-03-23MILANI, Eder Angelo. Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7943.https://repositorio.ufscar.br/handle/ufscar/7943From the generalized normal distribution and concepts of the generalized autoregressive moving averages models we introduce the generalized normal-ARMA model as an alternative way to model time series exhibiting symmetry and tails that may be lighter or heavier when compared the normal distribution. We present application for proposed model using three time series in the hydrology, economy and publics policy areas. The proposed model is presented as good alternative when compared to ARMA model with normal distribution. We extended this model the case of the asymmetric time series. In this case we used the Box-Cox transformation, denoted by Box-Cox generalized normal ARMA. The particular case, when we use the logarithmic transformation is called generalized log-normal ARMA. We adjusted the models with transformation to the series on monthly average affluent streamflow of the Furnas and Sobradinho hydroelectric plants. We obtain the prediction values for the model with transformation, that are better when compared with the model without transformation. To treat time series that exhibit periodic in the correlation function we defined three extensions for periodic autoregressive model, called generalized normal periodic autoregressive model, generalized log-normal periodic autoregressive model and Box-Cox generalized normal periodic autoregressive model. We can observed that the series on monthly average affluent streamflow of the Furnas and Sobradinho hydroelectric plants have periodic correlation. We present two applications of periodic models from these series. In the models, we note that is not necessary the use of generalized normal distribution in every months, just in some the generalized normal distribution presented better results than the normal distribution. Finally, we define the generalized normal zero inflated distribution and the generalized normal zero inflated ARMA model for time series. Adopting the model for series that have zero inflation and the maximum likelihood method for estimation of parameters, we analyze the serie of the amount of rainfall in the city of São Carlos.A partir da distribuição normal generalizada e dos conceitos do modelo autorregressivo e de médias móveis generalizado, introduzimos o modelo normal generalizada- ARMA, como alternativa para modelar séries temporais, que exibem simetria e caudas mais leves ou mais pesadas quando comparadas com a distribuição normal. Apresentamos aplicações do modelo proposto, usando três séries temporais, das áreas de hidrologia, políticas públicas e economia. O modelo proposto se apresentou como uma boa alternativa ao modelo ARMA com distribuição normal. Estendemos o modelo para o caso de séries que apresentam assimetria. Neste caso, utilizamos a transformação de Box-Cox, denotado por Box-Cox normal generalizada-ARMA. O caso particular quando utilizamos a transformação logarítmica é chamado de log-normal generalizada-ARMA. Ajustamos os modelos com transformação à séries de vazões das usinas hidrelétricas de Furnas e Sobradinho. Calculamos predições, que para o modelo com transformação, foram melhores, quando comparado ao modelo sem transformação. Com o objetivo de tratar séries que apresentam periodicidade na função de correlação, definimos três extensões do modelo autorregressivo periódico, chamando-os de modelo normal generalizada autorregressivo periódico, modelo log-normal generalizada autorregressivo periódico e modelo Box-Cox normal generalizada autorregressivo periódico. Constatamos que as séries de vazões das usinas hidrelétricas de Furnas e Sobradinho apresentam correlação periódica. Apresentamos duas aplicações dos modelos periódicos propostos usando estas séries. Nos ajustes dos modelos, notamos que não há necessidade da utilização da distribuição normal generalizada em todos os meses, mas em alguns a distribuição normal generalizada se sobressaiu em relação a distribuição normal. Por último, definimos a distribuição normal generalizada zero inflacionada e o modelo para séries temporais normal generalizada zero inflacionada-ARMA. Adotando o método de máxima verossimilhança e o modelo para séries que apresentam inflação de zeros, analisamos a série da quantidade de precipitação pluviométrica da cidade de São Carlos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Estatística - PPGEsUFSCarModelo Normal Generalizada-ARMAModelo Box-Cox Normal Generalizada-ARMAModelo Normal Generalizada-PAR.Generalized normal ARMA modelBox Cox Generalized Normal ARMA ModelBox-Cox Generalized Normal PAR ModelGeneralized Normal Zero Inflated ARMA ModelCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::ANALISE DE DADOSModelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizadainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6006006105a248-1b18-49f6-bbf3-c4006673f34ainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseEAMms.pdfTeseEAMms.pdfapplication/pdf1490434https://repositorio.ufscar.br/bitstream/ufscar/7943/1/TeseEAMms.pdfe7a807666b453630ffb423774d2539b9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/7943/2/license.txtae0398b6f8b235e40ad82cba6c50031dMD52TEXTTeseEAMms.pdf.txtTeseEAMms.pdf.txtExtracted texttext/plain254758https://repositorio.ufscar.br/bitstream/ufscar/7943/3/TeseEAMms.pdf.txt3b840404a1e3e90865ee9a1217e38e75MD53THUMBNAILTeseEAMms.pdf.jpgTeseEAMms.pdf.jpgIM Thumbnailimage/jpeg5004https://repositorio.ufscar.br/bitstream/ufscar/7943/4/TeseEAMms.pdf.jpga4e7c933ee0c6d4dc65b767f40191574MD54ufscar/79432023-09-18 18:30:59.717oai:repositorio.ufscar.br:ufscar/7943TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:59Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada
title Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada
spellingShingle Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada
Milani, Eder Angelo
Modelo Normal Generalizada-ARMA
Modelo Box-Cox Normal Generalizada-ARMA
Modelo Normal Generalizada-PAR.
Generalized normal ARMA model
Box Cox Generalized Normal ARMA Model
Box-Cox Generalized Normal PAR Model
Generalized Normal Zero Inflated ARMA Model
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::ANALISE DE DADOS
title_short Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada
title_full Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada
title_fullStr Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada
title_full_unstemmed Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada
title_sort Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada
author Milani, Eder Angelo
author_facet Milani, Eder Angelo
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1420630122459706
dc.contributor.author.fl_str_mv Milani, Eder Angelo
dc.contributor.advisor1.fl_str_mv Andrade Filho, Marinho Gomes de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4126245980112687
dc.contributor.authorID.fl_str_mv a0716210-408e-4a1d-a4e8-55a0da76bc83
contributor_str_mv Andrade Filho, Marinho Gomes de
dc.subject.por.fl_str_mv Modelo Normal Generalizada-ARMA
Modelo Box-Cox Normal Generalizada-ARMA
Modelo Normal Generalizada-PAR.
topic Modelo Normal Generalizada-ARMA
Modelo Box-Cox Normal Generalizada-ARMA
Modelo Normal Generalizada-PAR.
Generalized normal ARMA model
Box Cox Generalized Normal ARMA Model
Box-Cox Generalized Normal PAR Model
Generalized Normal Zero Inflated ARMA Model
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::ANALISE DE DADOS
dc.subject.eng.fl_str_mv Generalized normal ARMA model
Box Cox Generalized Normal ARMA Model
Box-Cox Generalized Normal PAR Model
Generalized Normal Zero Inflated ARMA Model
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::ANALISE DE DADOS
description From the generalized normal distribution and concepts of the generalized autoregressive moving averages models we introduce the generalized normal-ARMA model as an alternative way to model time series exhibiting symmetry and tails that may be lighter or heavier when compared the normal distribution. We present application for proposed model using three time series in the hydrology, economy and publics policy areas. The proposed model is presented as good alternative when compared to ARMA model with normal distribution. We extended this model the case of the asymmetric time series. In this case we used the Box-Cox transformation, denoted by Box-Cox generalized normal ARMA. The particular case, when we use the logarithmic transformation is called generalized log-normal ARMA. We adjusted the models with transformation to the series on monthly average affluent streamflow of the Furnas and Sobradinho hydroelectric plants. We obtain the prediction values for the model with transformation, that are better when compared with the model without transformation. To treat time series that exhibit periodic in the correlation function we defined three extensions for periodic autoregressive model, called generalized normal periodic autoregressive model, generalized log-normal periodic autoregressive model and Box-Cox generalized normal periodic autoregressive model. We can observed that the series on monthly average affluent streamflow of the Furnas and Sobradinho hydroelectric plants have periodic correlation. We present two applications of periodic models from these series. In the models, we note that is not necessary the use of generalized normal distribution in every months, just in some the generalized normal distribution presented better results than the normal distribution. Finally, we define the generalized normal zero inflated distribution and the generalized normal zero inflated ARMA model for time series. Adopting the model for series that have zero inflation and the maximum likelihood method for estimation of parameters, we analyze the serie of the amount of rainfall in the city of São Carlos.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-10-20T13:52:00Z
dc.date.available.fl_str_mv 2016-10-20T13:52:00Z
dc.date.issued.fl_str_mv 2016-03-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MILANI, Eder Angelo. Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7943.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/7943
identifier_str_mv MILANI, Eder Angelo. Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7943.
url https://repositorio.ufscar.br/handle/ufscar/7943
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 6105a248-1b18-49f6-bbf3-c4006673f34a
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística - PPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/7943/1/TeseEAMms.pdf
https://repositorio.ufscar.br/bitstream/ufscar/7943/2/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/7943/3/TeseEAMms.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/7943/4/TeseEAMms.pdf.jpg
bitstream.checksum.fl_str_mv e7a807666b453630ffb423774d2539b9
ae0398b6f8b235e40ad82cba6c50031d
3b840404a1e3e90865ee9a1217e38e75
a4e7c933ee0c6d4dc65b767f40191574
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715567019819008