Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol

Detalhes bibliográficos
Autor(a) principal: Cansian, Ana Bárbara Moulin
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/12764
Resumo: Biosurfactants are amphipathic molecules produced by enzymatic or microbiological routes. Biosynthesis can occur by esterifying sugars with fatty acids, with lipase as the main enzyme that catalyzes the reaction. However, such products are not yet available on the market, which is dominated by synthetic surfactants, derived from non-renewable sources. In view of this, there is a need to propose new production routes with greater economic viability than those already existing. Thus, the work in question proposes to model and simulate a bioprocess for biosurfactant synthesis through enzimatic route. The simulation was performed using equation-oriented software (EMSO).Two possible routes for the production of biosurtants were evaluated: the first employs the esterification, by immobilized lipase, of Free Fatty Acids (FFA) with xylose, followed by recovery and reuse of the enzymes, and the product separation / purification process using liquid-liquid extraction; a second consideration to the selection / purification of the product by use processes. Regarding the first proposal, in order to simulate the liquid-liquid balance, it was necessary to know the thermodynamic parameters. A solution commonly used to predict thermodynamic phase equilibrium when two liquid phases might be present is the non-random model of two liquids (NRTL). Thus, a specific objective of this work was to train a neural network to predict equilibrium parameters of the NRTL model, and then to obtain estimates of activity coefficients for compounds of interest in this work. An optimal neural configuration was obtained, adequately minimizing errors in training, validation and testing. The simulation of the first route was then carried out at EMSO, using the extractor developed for the separation process. However, there was no convergence since there is still a need for a greater amount of experimental information on the phases formed, which can be used as good initial guesses to the code implemented in the EMSO software. Despite the non-convergence, NRTL-neural modeling is an important methodological contribution to the study of separation of the esterification product via liquid-liquid extraction, which may be better applied in future works. As the separation by extraction is still not concise enough, we proceeded to simulate the second route to be evaluated, based on a proposed precipitation sequence. Considering such a process 4 alternative, the modeling and simulation were carried out successfully. The percentage of solids in the product was about 14% AGL and 86% biosurfactant. Regarding the study of energy expenditure, in general, there was a greater absolute amount of heat associated with cooling (coolers that precede the first precipitator and the second precipitator, - 216.5162 kW) than heating (esterification reactor, 20.1748 kW). With the simulations carried out it was possible to verify that the degree of purity found in previous work available in the literature could be reached for the production of biosurfactants from residues of the biorefinery environment via enzymatic catalysis, becoming an alternative in obtaining sugar esters.
id SCAR_b6e5ae297904a58c2798d41faedd1a02
oai_identifier_str oai:repositorio.ufscar.br:ufscar/12764
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Cansian, Ana Bárbara MoulinSousa Júnior, Ruy dehttp://lattes.cnpq.br/1983482879541203Furlan, Felipe Fernandohttp://lattes.cnpq.br/4136352953168873http://lattes.cnpq.br/2791829789886693f1ee6b67-5368-4186-9431-9e2ac90475b82020-05-22T16:06:41Z2020-05-22T16:06:41Z2020-03-02CANSIAN, Ana Bárbara Moulin. Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol. 2020. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12764.https://repositorio.ufscar.br/handle/ufscar/12764Biosurfactants are amphipathic molecules produced by enzymatic or microbiological routes. Biosynthesis can occur by esterifying sugars with fatty acids, with lipase as the main enzyme that catalyzes the reaction. However, such products are not yet available on the market, which is dominated by synthetic surfactants, derived from non-renewable sources. In view of this, there is a need to propose new production routes with greater economic viability than those already existing. Thus, the work in question proposes to model and simulate a bioprocess for biosurfactant synthesis through enzimatic route. The simulation was performed using equation-oriented software (EMSO).Two possible routes for the production of biosurtants were evaluated: the first employs the esterification, by immobilized lipase, of Free Fatty Acids (FFA) with xylose, followed by recovery and reuse of the enzymes, and the product separation / purification process using liquid-liquid extraction; a second consideration to the selection / purification of the product by use processes. Regarding the first proposal, in order to simulate the liquid-liquid balance, it was necessary to know the thermodynamic parameters. A solution commonly used to predict thermodynamic phase equilibrium when two liquid phases might be present is the non-random model of two liquids (NRTL). Thus, a specific objective of this work was to train a neural network to predict equilibrium parameters of the NRTL model, and then to obtain estimates of activity coefficients for compounds of interest in this work. An optimal neural configuration was obtained, adequately minimizing errors in training, validation and testing. The simulation of the first route was then carried out at EMSO, using the extractor developed for the separation process. However, there was no convergence since there is still a need for a greater amount of experimental information on the phases formed, which can be used as good initial guesses to the code implemented in the EMSO software. Despite the non-convergence, NRTL-neural modeling is an important methodological contribution to the study of separation of the esterification product via liquid-liquid extraction, which may be better applied in future works. As the separation by extraction is still not concise enough, we proceeded to simulate the second route to be evaluated, based on a proposed precipitation sequence. Considering such a process 4 alternative, the modeling and simulation were carried out successfully. The percentage of solids in the product was about 14% AGL and 86% biosurfactant. Regarding the study of energy expenditure, in general, there was a greater absolute amount of heat associated with cooling (coolers that precede the first precipitator and the second precipitator, - 216.5162 kW) than heating (esterification reactor, 20.1748 kW). With the simulations carried out it was possible to verify that the degree of purity found in previous work available in the literature could be reached for the production of biosurfactants from residues of the biorefinery environment via enzymatic catalysis, becoming an alternative in obtaining sugar esters.Biossurfactantes são moléculas anfipáticas produzidas por rotas enzimáticas ou microbiológicas. A biossíntese pode ocorrer pela esterificação de açúcares com ácidos graxos, tendo a lipase como principal enzima que catalisa a reação. No entanto, tais produtos ainda não estão disponíveis no mercado, sendo este dominado por surfactantes sintéticos, derivados de fontes não renováveis. Diante disso, surge a necessidade de propor novas rotas de produção com viabilidade econômica superior às já existentes. Assim, o trabalho em questão propõe modelar e simular um fluxograma de bioprocesso ainda não empregado industrialmente. A simulação foi realizada em um software orientado a equações (EMSO). Duas possíveis rotas para produção de biossurtactantes foram avaliadas: a primeira emprega a esterificação, por lipase imobilizada, de Ácidos Graxos Livres (AGL) com xilose, seguida por recuperação e reutilização das enzimas, e processo de separação/purificação do produto utilizando extração líquido-líquido; a segunda considera a separação/purificação do produto por processos de precipitação. Referente à primeira proposta, para que seja possível simular o equilíbrio líquido-líquido é necessário conhecer os parâmetros termodinâmicos. Uma solução comumente usada para prever o equilíbrio termodinâmico de fases é o modelo não-aleatório de dois líquidos (do inglês, NRTL). Desta forma, um objetivo específico deste trabalho foi treinar uma rede neural para predizer parâmetros de equilíbrio do modelo NRTL, e então obter estimativas de coeficientes de atividade para compostos de interesse deste trabalho. Uma configuração neural ótima foi obtida, minimizando adequadamente os erros de treinamento, validação e teste. A simulação da primeira rota foi então realizada no EMSO, utilizando o extrator desenvolvido para o processo de separação. Contudo, não houve convergência uma vez que ainda se faz necessária uma maior quantidade de informação experimental sobre as fases formadas, que possam ser utilizadas como bons chutes iniciais ao código implementado no software EMSO. Apesar da não-convergência, a modelagem NRTL-neural é uma contribuição metodológica importante para estudo de separação do produto de esterificação via extração líquido-líquido, a qual poderá ser melhor aplicada em trabalhos futuros. Como a separação por 2 extração, conforme aqui abordada, ainda não é concisa o suficiente, caminhou-se para a simulação da segunda rota a ser avaliada, tendo por base uma sequência de precipitações propostas. Considerando tal alternativa de processo, a modelagem e simulação foram realizadas com sucesso. A porcentagem dos sólidos no produto foi de cerca de 14% de AGL e 86% de biossurfactante. Com relação ao estudo dos gastos energéticos, de forma geral, observou-se maior quantidade absoluta de calor associada ao resfriamento (resfriadores que antecedem o primeiro precipitador e o segundo precipitador, - 216,5162 kW) do que ao aquecimento (reator de esterificação, 20,1748 kW). Com as simulações realizadas foi possível verificar que o grau de pureza encontrado em trabalho anterior disponível na literatura pôde ser atingido para produção de biossurfactantes a partir de resíduos do ambiente de biorrefinarias via catálise enzimática, se tornando uma alternativa na obtenção de ésteres de açúcar.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 132826/2018-6porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBiossurfactantesModelagem e SimulaçãoEsterificaçãoLipasesSeparação/Purificação do produtoPrecipitaçãoBiosurfactantsModeling and SimulationEsterificationLipasesSeparation / Purification of the productPrecipitationENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAModelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanolModeling and simulation of biosurfactant production in biodiesel-bioethanol integrated biorefineryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600ab69fa78-14aa-4e78-beb8-e23c9aefadecreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação_Versao_Final.pdfDissertação_Versao_Final.pdfDissertação de Mestradoapplication/pdf1564199https://repositorio.ufscar.br/bitstream/ufscar/12764/1/Disserta%c3%a7%c3%a3o_Versao_Final.pdfee2f67fd14aef485dcdb2f4ef5ca67f7MD51Comprovante assinado.pdfComprovante assinado.pdfCarta Comprovanteapplication/pdf117606https://repositorio.ufscar.br/bitstream/ufscar/12764/2/Comprovante%20assinado.pdf46c47f55f8cec97d5b001d9eac81373eMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12764/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTDissertação_Versao_Final.pdf.txtDissertação_Versao_Final.pdf.txtExtracted texttext/plain136170https://repositorio.ufscar.br/bitstream/ufscar/12764/4/Disserta%c3%a7%c3%a3o_Versao_Final.pdf.txtf6dff5379162fe5467767fc896752f35MD54Comprovante assinado.pdf.txtComprovante assinado.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/12764/6/Comprovante%20assinado.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD56THUMBNAILDissertação_Versao_Final.pdf.jpgDissertação_Versao_Final.pdf.jpgIM Thumbnailimage/jpeg6642https://repositorio.ufscar.br/bitstream/ufscar/12764/5/Disserta%c3%a7%c3%a3o_Versao_Final.pdf.jpg38e252a28286b26f5499762e65f0724aMD55Comprovante assinado.pdf.jpgComprovante assinado.pdf.jpgIM Thumbnailimage/jpeg13059https://repositorio.ufscar.br/bitstream/ufscar/12764/7/Comprovante%20assinado.pdf.jpg36ac01ed8a7c6894e7762a2f0527e473MD57ufscar/127642023-09-18 18:31:54.762oai:repositorio.ufscar.br:ufscar/12764Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:54Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol
dc.title.alternative.eng.fl_str_mv Modeling and simulation of biosurfactant production in biodiesel-bioethanol integrated biorefinery
title Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol
spellingShingle Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol
Cansian, Ana Bárbara Moulin
Biossurfactantes
Modelagem e Simulação
Esterificação
Lipases
Separação/Purificação do produto
Precipitação
Biosurfactants
Modeling and Simulation
Esterification
Lipases
Separation / Purification of the product
Precipitation
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
title_short Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol
title_full Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol
title_fullStr Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol
title_full_unstemmed Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol
title_sort Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol
author Cansian, Ana Bárbara Moulin
author_facet Cansian, Ana Bárbara Moulin
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2791829789886693
dc.contributor.author.fl_str_mv Cansian, Ana Bárbara Moulin
dc.contributor.advisor1.fl_str_mv Sousa Júnior, Ruy de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1983482879541203
dc.contributor.advisor-co1.fl_str_mv Furlan, Felipe Fernando
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4136352953168873
dc.contributor.authorID.fl_str_mv f1ee6b67-5368-4186-9431-9e2ac90475b8
contributor_str_mv Sousa Júnior, Ruy de
Furlan, Felipe Fernando
dc.subject.por.fl_str_mv Biossurfactantes
Modelagem e Simulação
Esterificação
Lipases
Separação/Purificação do produto
Precipitação
topic Biossurfactantes
Modelagem e Simulação
Esterificação
Lipases
Separação/Purificação do produto
Precipitação
Biosurfactants
Modeling and Simulation
Esterification
Lipases
Separation / Purification of the product
Precipitation
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Biosurfactants
Modeling and Simulation
Esterification
Lipases
Separation / Purification of the product
Precipitation
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
description Biosurfactants are amphipathic molecules produced by enzymatic or microbiological routes. Biosynthesis can occur by esterifying sugars with fatty acids, with lipase as the main enzyme that catalyzes the reaction. However, such products are not yet available on the market, which is dominated by synthetic surfactants, derived from non-renewable sources. In view of this, there is a need to propose new production routes with greater economic viability than those already existing. Thus, the work in question proposes to model and simulate a bioprocess for biosurfactant synthesis through enzimatic route. The simulation was performed using equation-oriented software (EMSO).Two possible routes for the production of biosurtants were evaluated: the first employs the esterification, by immobilized lipase, of Free Fatty Acids (FFA) with xylose, followed by recovery and reuse of the enzymes, and the product separation / purification process using liquid-liquid extraction; a second consideration to the selection / purification of the product by use processes. Regarding the first proposal, in order to simulate the liquid-liquid balance, it was necessary to know the thermodynamic parameters. A solution commonly used to predict thermodynamic phase equilibrium when two liquid phases might be present is the non-random model of two liquids (NRTL). Thus, a specific objective of this work was to train a neural network to predict equilibrium parameters of the NRTL model, and then to obtain estimates of activity coefficients for compounds of interest in this work. An optimal neural configuration was obtained, adequately minimizing errors in training, validation and testing. The simulation of the first route was then carried out at EMSO, using the extractor developed for the separation process. However, there was no convergence since there is still a need for a greater amount of experimental information on the phases formed, which can be used as good initial guesses to the code implemented in the EMSO software. Despite the non-convergence, NRTL-neural modeling is an important methodological contribution to the study of separation of the esterification product via liquid-liquid extraction, which may be better applied in future works. As the separation by extraction is still not concise enough, we proceeded to simulate the second route to be evaluated, based on a proposed precipitation sequence. Considering such a process 4 alternative, the modeling and simulation were carried out successfully. The percentage of solids in the product was about 14% AGL and 86% biosurfactant. Regarding the study of energy expenditure, in general, there was a greater absolute amount of heat associated with cooling (coolers that precede the first precipitator and the second precipitator, - 216.5162 kW) than heating (esterification reactor, 20.1748 kW). With the simulations carried out it was possible to verify that the degree of purity found in previous work available in the literature could be reached for the production of biosurfactants from residues of the biorefinery environment via enzymatic catalysis, becoming an alternative in obtaining sugar esters.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-05-22T16:06:41Z
dc.date.available.fl_str_mv 2020-05-22T16:06:41Z
dc.date.issued.fl_str_mv 2020-03-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CANSIAN, Ana Bárbara Moulin. Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol. 2020. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12764.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/12764
identifier_str_mv CANSIAN, Ana Bárbara Moulin. Modelagem e simulação da produção de biossurfactante em biorrefinaria integrada biodiesel-bioetanol. 2020. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12764.
url https://repositorio.ufscar.br/handle/ufscar/12764
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv ab69fa78-14aa-4e78-beb8-e23c9aefadec
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/12764/1/Disserta%c3%a7%c3%a3o_Versao_Final.pdf
https://repositorio.ufscar.br/bitstream/ufscar/12764/2/Comprovante%20assinado.pdf
https://repositorio.ufscar.br/bitstream/ufscar/12764/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/12764/4/Disserta%c3%a7%c3%a3o_Versao_Final.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/12764/6/Comprovante%20assinado.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/12764/5/Disserta%c3%a7%c3%a3o_Versao_Final.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/12764/7/Comprovante%20assinado.pdf.jpg
bitstream.checksum.fl_str_mv ee2f67fd14aef485dcdb2f4ef5ca67f7
46c47f55f8cec97d5b001d9eac81373e
e39d27027a6cc9cb039ad269a5db8e34
f6dff5379162fe5467767fc896752f35
68b329da9893e34099c7d8ad5cb9c940
38e252a28286b26f5499762e65f0724a
36ac01ed8a7c6894e7762a2f0527e473
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715616651018240